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∞
𝑛=1 =

𝜋2

6
 

Levels recommended for proof: 5 

Proof: 

Recall De Moivre’s theorem, which says that (cos(𝜃) + 𝑖 sin(𝜃))𝑛 = cos(𝑛𝜃) + 𝑖 sin(𝑛𝜃). Now we have 

that 
(cot(𝜃)+𝑖)2𝑛+1−(cot(𝜃)−𝑖)2𝑛+1

2𝑖
=

(cos(𝜃)+𝑖 sin(𝜃))2𝑛+1−(cos(𝜃)−𝑖 sin(𝜃))2𝑛+1

2𝑖(sin2n+1(𝜃))
=

cos((2𝑛+1)𝜃)+𝑖 sin((2𝑛+1)𝜃)−cos((2𝑛+1)𝜃)+𝑖 sin((2𝑛+1)𝜃)

2𝑖(sin2n+1(𝜃))
=

sin((2𝑛+1)𝜃)

sin2n+1(𝜃)
. 

Now lets suppose that 𝜃 =
𝑚𝜋

2𝑛+1
 for some integer m that is between 1 and n inclusive. Then we know 

that sin((2𝑛 + 1)𝜃) = 0 and therefore 
(cot(𝜃)+𝑖)2𝑛+1−(cot(𝜃)−𝑖)2𝑛+1

2𝑖
= 0. Now I will use the binomial 

theorem to expand (cot(𝜃) + 𝑖)2𝑛+1 − (cot(𝜃) − 𝑖)2𝑛+1, which we know must be equal to 0. We will 

get 0 = ∑ (
2𝑛 + 1

𝑟
) cot𝑟(𝜃) 𝑖2𝑛+1−𝑟2𝑛+1

𝑟=1 − ∑ (
2𝑛 + 1

𝑟
) cot𝑟(𝜃) (−𝑖)2𝑛+1−𝑟2𝑛+1

𝑟=0 =

∑ (
2𝑛 + 1

𝑟
) cot𝑟(𝜃) [𝑖2𝑛+1−𝑟 − (−𝑖)2𝑛+1−𝑟]2𝑛+1

𝑟=1 . 

When r is odd, 2n+1-r is even, so the bracketed term will look like 𝑖2𝑘 − (−𝑖)2𝑘 where k is an integer, 
but this equals (−1)𝑘 − (−1)𝑘 = 0. Therefore the only terms that survive are the terms where r is 
even, so we can replace r with s ranging from 1 to n where s is 2r. We have 

∑ (
2𝑛 + 1

2𝑠
) cot2𝑠(𝜃) [𝑖2(𝑛−𝑠)+1 − (−𝑖)2(𝑛−𝑠)+1]

𝑛

𝑠=0

 

Lets replace s with n-s, and note the identity (2𝑛 + 1
2𝑠

) = (
2𝑛 + 1

2𝑛 + 1 − 2𝑠
) (since we can choose 2s 

things in the same number of ways we can exclude 2s things). Lets call n-s k, then we have 

∑ (
2𝑛 + 1
2𝑘 + 1

) cot2(𝑛−𝑘)(𝜃) [𝑖2𝑘+1 − (−𝑖)2𝑘+1]

𝑛

𝑘=0

 

This last term is 𝑖 + 𝑖 = 2𝑖 when k is even and −𝑖 − 𝑖 = −2𝑖 when k is odd. Since the whole thing 
equals 0, we can divide it through by 2i to get the following: 

∑ (
2𝑛 + 1
2𝑘 + 1

) cot2(𝑛−𝑘)(𝜃) (−1)𝑘

𝑛

𝑘=0

= 0 

If 𝑥 = cot2(𝜃) we can write the sum above as 

(
2𝑛 + 1

1
) 𝑥𝑛 − (

2𝑛 + 1
3

) 𝑥𝑛−1 + ⋯ + (−1)𝑛 = 0 

Note that the roots of the polynomial above are exactly the n numbers cot2 (
𝑚𝜋

2𝑛+1
) for m an integer 

going from 1 to n. The same logic applies if m is an integer greater than n or less than 0, however this 
would give one of the same numbers – this can be argued from symmetry of the graph, or from the fact 

that it must be the case as cot2 (
𝑚𝜋

2𝑛+1
) for m from 1 to n is always distinct as cot  is increasing in that 

range, and an n-degree polynomial cannot have more than n roots (or else you could factor it more 
than n times by the factor theorem). 



Now we know that the sum of roots of a polynomial is minus the second leading coefficient divided by 
the leading coefficient. Applying this to the polynomial above gives 

∑ cot2 (
𝑚𝜋

2𝑛 + 1
)

𝑛

𝑚=1

=
(

2𝑛 + 1
3

)

(
2𝑛 + 1

1
)

=

(2𝑛 + 1)!
3! (2𝑛 − 2)!

2𝑛 + 1
=

(2𝑛)!

6(2𝑛 − 2)!
=

(2𝑛)(2𝑛 − 1)

6
=

𝑛(2𝑛 − 1)

3
 

We now need two facts: 

- For 𝜃 between 0 and 𝜋
2

, sin(𝜃) = ∫ cos(𝑥) 𝑑𝑥
𝜃

0
. Since cos(x) is always between 0 and 1 in that 

range, it means that sin(𝜃) is between 0 and 𝜃 

- For 𝜃 between 0 and 𝜋
2

, tan(𝜃) = ∫ sec2(𝑥) 𝑑𝑥
𝜃

0
 (you can write tan as 𝑠𝑖𝑛

𝑐𝑜𝑠
 and differentiate it 

using the quotient rule and verify that it is 𝑠𝑒𝑐2). Since cos(x) is always between 0 and 1 in that 
range, it means that sec(𝜃) is greater than 1 for all non-zero values in that range, and therefore 
tan(𝜃) > 𝜃 

So 0 < sin(𝜃) < 𝜃 < tan (𝜃) for 𝜃 between 0 and 𝜋
2

. Since in sin(𝜃) < 𝜃 < tan(𝜃) they are all positive, 

taking the reciprocal of both sides flips the inequality, so cot(𝜃) <
1

𝜃
< csc(𝜃). We still have positive 

things, so we will square both sides to get cot2(𝜃) <
1

𝜃2 < csc2(𝜃). However we can say something 

else, which is that cot2(𝜃) <
1

𝜃2 < 1 + cot2(𝜃), as csc2(𝜃) =
1

sin2(𝜃)
=

sin2(𝜃)+cos2(𝜃)

sin2(𝜃)
= 1 + cot2(𝜃). 

Now ∑ cot2 (
𝑚𝜋

2𝑛+1
)𝑛

𝑚=1 < ∑
(2𝑛+1)2

𝑚2𝜋2
𝑛
𝑚=1 < ∑ 1 + cot2 (

𝑚𝜋

2𝑛+1
)𝑛

𝑚=1 = 𝑛 + ∑ cot2 (
𝑚𝜋

2𝑛+1
)𝑛

𝑚=1  

But we know ∑ cot2 (
𝑚𝜋

2𝑛+1
)𝑛

𝑚=1 =
𝑛(2𝑛−1)

3
, therefore 𝑛 + ∑ cot2 (

𝑚𝜋

2𝑛+1
)𝑛

𝑚=1 =
𝑛(2𝑛+2)

3
. Therefore we have 

the tight bound 𝑛(2𝑛−1)

3
< ∑

(2𝑛+1)2

𝑚2𝜋2
𝑛
𝑚=1 <

𝑛(2𝑛+2)

3
 for all positive integers n. Lets multiply through by 

𝜋2

(2𝑛+1)2 to get that 𝑛(2𝑛−1)𝜋2

3(2𝑛+1)2 < ∑
1

𝑚2
𝑛
𝑚=1 <

𝑛(2𝑛+2)𝜋2

3(2𝑛+1)2 . But notice that as n gets large, 𝑛(2𝑛−1)

3(2𝑛+1)2 and 𝑛(2𝑛+2)

3(2𝑛+1)2 

will both approach 1
6

, as they are exactly 1
6

 save for the +1 and +2 and -1 terms which contribute a 

factor on the order of 1
𝑛

. Therefore the sum ∑ 1

𝑚2
𝑛
𝑚=1  is bounded below and above by something that 

approaches 𝜋
2

6
, and therefore the infinite sum is equal to exactly 𝜋

2

6
. 


