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Levels recommended for proof: 5
Proof:

Recall De Moivre’s theorem, which says that (cos(6) + i sin(6))™ = cos(nf) + i sin(nf). Now we have

that (cot(8)+1)2+1—(cot(6) -2 (cos(8)+isin(6))2"*1—(cos(0)—isin(6))2"*?

20 2i(sin20+1(9))
cos((2n+1)0)+isin((2n+1)6)—cos((2n+1)0)+isin((2n+1)6) _ sin((2n+1)6)
2i(sin2n+1(9)) T sinzn+i(g) ¢

Now lets suppose that 8 = %for some integer m that is between 1 and n inclusive. Then we know

n2n+1_ _i2n+1
that sin((2n + 1)6) = 0 and therefore (cot(8)+0) Zi(COt(Q) 2

theorem to expand (cot(8) + i)?"*! — (cot(8) — i)?™*1, which we know must be equal to 0. We will

get 0= 2n1L1 (ZTL + 1) COtr(Q) i2n+1—r _ 72«1;-6—1 (Zn:‘ 1) COtr(Q) (_i)2n+1—1” =

= 0. Now | will use the binomial

2n+1 . _
%21-1( nr )Cotr(e) [i 2n+1-r — (- l)2n+1 .

When ris odd, 2n+1-r is even, so the bracketed term will look like i%¥ — (—i)?* where k is an integer,
but this equals (—1)* — (=1)¥ = 0. Therefore the only terms that survive are the terms where r is
even, so we can replace r with s ranging from 1 to n where s is 2r. We have

n
z 2” +1 COtZS(H) [iz(n—s)+1 _ (_L-)z(n—s)+1]

2n + 1) _ ( 2n+1
2s 2n+1-—2s
things in the same number of ways we can exclude 2s things). Lets call n-s k, then we have

Lets replace s with n-s, and note the identity ( ) (since we can choose 2s

n

2n+1 _ ; .
Z (22 N 1) cot2(=k) (g) [12k+1 — (—{)2k+1]
k=0

This lasttermisi + i = 2i when kis even and —i — i = —2i when kis odd. Since the whole thing
equals 0, we can divide it through by 2i to get the following:

n

2n+1

(21 4 1) PO ¥ =0

k=0
If x = cot?(@) we can write the sum above as
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Note that the roots of the polynomial above are exactly the n numbers cot? (2n+ ) for m an integer

going from 1 to n. The same logic applies if mis an integer greater than n or less than 0, however this
would give one of the same numbers - this can be argued from symmetry of the graph, or from the fact

that it must be the case as cot? (2n+1) for m from 1 to nis always distinct as cot is increasing in that

range, and an n-degree polynomial cannot have more than n roots (or else you could factor it more
than n times by the factor theorem).



Now we know that the sum of roots of a polynomial is minus the second leading coefficient divided by
the leading coefficient. Applying this to the polynomial above gives

n 2n+1 (2n + 1)!

Z ) ( 3 ) _32n=-2)! __ (Cn)} _(@mCEn-1) n2n-1)
co 2n 1 (Zn + 1) m+1  6@2n—-2) 6 3
=1 1

We now need two facts:

- For 0 between 0 and g sin(9) = foe cos(x) dx. Since cos(x) is always between 0 and 1 in that
range, it means that sin(6) is between 0 and 6
- For 6 between 0 and g, tan(8) = foe sec?(x) dx (you can write tan as % and differentiate it

using the quotient rule and verify that it is sec?). Since cos(x) is always between 0 and 1 in that
range, it means that sec(6) is greater than 1 for all non-zero values in that range, and therefore
tan(0) > 6

So 0 < sin(f) < 6 < tan () for O between 0 and % Since insin(8) < 6 < tan(@) they are all positive,

taking the reciprocal of both sides flips the inequality, so cot(6) < % < csc(0). We still have positive

things, so we will square both sides to get cot?(8) < 9—12 < csc?(0). However we can say something

1 sin?(8)+cos?(H)
sin2(9) sinZ(0)

Now ¥ _; cot? (2 +1) < Y= (27::1—3 < Ym=11+ cot? (2 +1) =n+ Y-, cot? (2n+1)

else, which is that cot?(8) < o> < 1+ cot?(6), as csc?(8) = = 1+ cot?(6).

_ n(2n-1)

But we know Y% _; cot? ( , therefore n + Y1 _; cot? (2n+1) = MZ;HZ). Therefore we have

)
(2n+1)?
m2m2

<2m 1_<

the tight bound "= < 3. _,

w2 n(2n 1m?

n +1)2to getthat ———— 3(2 T

< n(22+2) for all positive integers n. Lets multiply through by

n(2n+2)m?
3(2n+1)2 °

n(2n-1) n(2n+2)
3(2n+1)2 3(2n+1)2

. But notice that as n gets large,
will both approach -, as they are exactly— save for the +1 and +2 and -1 terms which contribute a

factor on the order of —. Therefore the sum ).2!,_ 1, — is bounded below and above by something that

2
approaches ?, and therefore the infinite sum is equal to exactly '



