STUFF HIGHLIGHTED IN PINK WILL BE MOVED TO LEVEL 3 WHEN THAT LEVEL IS DONE.
Prime factorization (GCSE)

Clearly for every number a factorization into primes exists — | can take any number and make a
factorization by repeatedly factoring its factors until | can’t anymore, which will be when the factors
are prime. Now | will prove that this can be done in a unique way. | use the fact that clearly 1 and 2
have a unique factorization (1 factors as no primes and 2 factors as just 2) and | show that all numbers
have a unique factorization by showing that if all numbers 2,3,4,...,n have a unique factorization so
does n+1, as then 2 having one implies 3 does, 2 and 3 having one implies 4 does, etc. This type of
logic is known as induction.

2. Now we show that Property 2 also holds. Suppose that each of the numbers 2. .. n has
a unique prime factorisation. We must show that so does n + 1. Suppose

n+l=p..ps=mq...4% (8)

where each of the p; and g; is prime. By reordering each side, we may assume that p, <
P <o <p,and g < g < -0, We consider two cases:

o pp =, and
s L FM|

In the first case, dividing the equality p---ps = q1---q¢ by p1. we deduce that ps---p;, =
gz ... Aspp = 1, po---pr < n+ 1 and s0 must have a unique prime factorisation, by our
supposition. Therefore s =  and, since we have written the primes in increasing order,
P2 = g2...., Pe = gs. Since also p; = qq. the two factorisations of n + 1 coincide, and n + 1
has a unique prime factorisation.

In the second case, suppose g < g;. Then

Ppa P — G2 qy) =
= PPz - Ps — 192 - 4

= qu e — Prge G
= (@ —p)a g
(9)
Let ry...r, be a prime factorisation of g — py: putting this together with the prime factori-
sation go. . .q¢ gives a prime factorisation of the right hand side of (9) and therefore of its left
hand side, py(p2.. . ps — ga...q:). As this number is less than n + 1, its prime factorisation
is unique (up to order), by our inductive assumption. It is clear that p; is one of its prime
factors; hence p; must be either a prime factor of g, — p; or of ga. . .qe. Clearly p is not
equal to any of the g;, because py < 1 < g2 < -+- < . So it can’t be a prime factor

of g,...g;, again by uniqueness of prime factorisations of g.. . .q, which we are allowed to
assume hecause gs. ..q; < n+ 1. So it must be a prime factor of g; — p;. But this means that
p1 divides g;. This is absurd: ¢; 1s a prime and not equal to p;. This absurdity leads us to
conclude that p, it cannot be less than q,.

The same argument, with the roles of the p's and g's reversed, shows that it is also impossible
to have p; = q;. The proof is complete. O

Sum of polygon angles (concave case) (GCSE)

We use the same principle of induction that we did for the prime factorization proof. We want to show
that any n sided polygon can be triangulated into n-2 triangles like in the image below, where each
vertex of each triangle is a vertex of the original polygon.



Image: Shows an example of triangulating a polygon.

And then we see that the sum of the interior angles becomes 180(n-2) as the sum of the interior
angles of the original polygon must be equal to the sum of the interior angles of the n-2 triangles,
which clearly is 180(n-2) by the above convex case as triangles are indeed convex. Now it remains to
show that a triangulation exists. The approach will be to show that if a triangulation exists into a
number of triangles equal to the number of sides minus 2 for any polygon with 3, 4, 5, ... n-1 sides,
then it works for n sides as well, as then we can say that well clearly it works for triangles so it must
work for four sided shapes, but it works for triangles and four sided shapes so it must work for five
sided shapes, and so on until we have it for all numbers of sides.

Now, suppose all polygons with fewer than n sides can be triangulated into the number of sides minus
two triangles, and that we have a polygon with n sides. consider the leftmost vertex. Clearly, the angle
atthat vertex is less than 180 degrees, since otherwise it wouldn’t be the leftmost vertex! (Just think
about it hard enough to see this). Then consider the two neighbouring vertices and try to draw a line
between them. Possibly this line does not intersect part of the polygon, in which case we form a
triangle and have successfully split it into a triangle and another polygon with n-1 sides which by our
assumption about any polygon with fewer than n sides can be triangulated into n-3 triangles, so our
original polygon can be triangulated into n-2 triangles, so done. Otherwise, we connect the two
neighbouring vertices to the leftmost one and part of the polygon is inside the triangle formed. In
which case, we pick the leftmost vertex inside this triangle (meaning no part of the polygon is in any
pointin the triangle to the left) and connect it to the leftmost vertex, noting that now this diagonal
cannot be obstructed, so we have split the polygon. Suppose it has been split into one with x sides,
then the other one has n+2-x sides (As the total number of sides of the two becomes n-2 as the
diagonal which we used to cut used to contribute 0 sides and now contributes 2). By our assumption
about polygons with fewer than n sides, we have that one part can be triangulated into x-2 triangles
and the other part can be triangulated into n-x triangles, so the original polygon can be triangulated
into n-2 triangles. So done.

Area of a circle (GCSE)



mr . . .
! Image: Shows a circle cut into many slices and then below shows the

slices rearranged to form a rectangle-looking shape of height r and width mr.

From this diagram it is clear that as we make the slices smaller the area of the figure on the bottom
approaches a rectangle which will clearly have an area of r?.

Factor theorem
Given a polynomial f(x), x-a divides f(x) if and only if a is a root of f(x), ie f(a)=0

First, notice the wording “if and only if”. This means that the statements are equivalent, which means
one implies the other. Therefore, it is sufficient to show that x-a dividing f(x) implies f(a)=0 and that
f(a)=0 implies that x-a divides f(x)

First, suppose x-a divides f(x). This means that there exists a polynomial g(x) such that f(x)=(x-a)g(x).
Now evaluate f(a) by substituting a in place of x. This gives f(a)=(a-a)g(a). Since a-a=0, f(a)=0g(a)=0.

Now suppose that f(a)=0. We know that if we went through the long division process, we would get
that f(x)=(x-a)g(x)+R for some polynomial g(a) and some remainder R. Since this is true for all values of
X, itis true when x=a, so f(a)=(a-a)g(a)+R, but we know that (a-a)g(a)=0 since a-a=0 and that f(a)=0 by
our assumption, so 0=0+R, therefore R=0. This means that f(x)=(x-a)g(x) so x-a divides f(x).~

Remainder theorem

If f(x) is a polynomial, and you do long division of f(x) by x-a then get f(x)=(x-a)g(x)+R for some
polynomial g(x) so that R is the remainder, then R=f(a). More generally, if you divide f(x) by bx-a then the

remainder is f(g).
b

Proof: First, note that f(x)=(x-a)g(x)+R is true for all values of x, so substituting x=a gives f(a)=(a-
a)g(a)+R. Since (a-a)g(a)=0 since a-a=0, f(a)=R.

If we divide f(x) by bx-a we will get f(x)=(bx-a)g(x)+R for some polynomial g. Let x=% since this is true for
all x, then we get f(%) = (b(%)-a)g(%)+R = (a-a)g(%)+R (since the b’s cancelin the b(%) term) = R, since
again, (a-a) times anything is always 0.

Equating coefficients

We can do this because if two polynomials with different coefficients were the same, their difference
would be a polynomial with non-zero coefficients, which is clearly never 0, since if the x* term were
its smallest non-zero term, the kth derivative of the polynomial would be non-zero at x=0,
contradicting the fact that the polynomial is zero. This holds for infinite polynomials too once we have



the justification of differentiating those term by term (needed for generalized binomial theroem proof,
added as an appendix).

Product rule
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an image with a visual proof of the product rule.

In the geometric illustration above u is shorthand for f(x) and v is shorthand for g(x).

Chain rule
dg(f(®) _ g(f(x+h)) 90 @) _ yim g(f(x+h)):g(f(x))f(x+h)—f(x) - 2 (FX)P ()
dx h—>0 h—0 f(x+h)—f(x) h

But this is actually not a proof because f(x + h) — f(x) could be 0.

g)-g(f(x))
y—f(x)

function is continuous at y=f(x) since as y approaches f(x)

if y does not equal f(x) and d(y)=g’(f(x)) if y=F(x). This
g¥)-g(f(x))
y=f(x)
g(fe+m)—-g(f ) _ g(fx+n)-g(f(x)) fx+h)—f(x)
h T fle+h)—f(x) h

is the same as saying gt +h)) g(r®) _ =d(f(x+ h))M Otherwise, we still have that

So, we define a function d(y) to be
approaches g’(f(x)) by definition.

which

If g(f(x+h)) does not equal g(f(x)) then we have that

g(f(x+h)) (@) _ =d(f(x+ h)) f—(x+h) 1O since f(x+h)=f(x) so we are just saying that 0=0. Therefore,
the correct proof is ———= g(f( ) l im d(f(x + h))M But since d(f(x+h)) approaches g’(f(x)) as h

goes to 0 by continuity of d, and M approaches f’(x) by definition, the result follows.

Quotient rule

This follows from the product and chain rules.

d fx) dx(f( ) * g(x)) f1(x) * +f( ) * E g(x)

dx g(x)

Where | have used the product rule to get the second equality.

We can use the chain rule to find — (%) The chain rule says that for any 2 functions g(x), h(x), the

derivative of h(g(x)) with respect to x is given by g’(x)h’(g(x)). In this case, if h(x) is the function %then

) — i l = _—1
E—h(g( x)). Now h’(x) = = (x) = by the rule above so
(g() = —=. This means that 1= (=) = g'(x) * —.



-1 _ g)f (x)-fx)g’ (x)

4 =
g(x)? g(x)?

. d f(x) _
Now finally, f'(x) * e

axg()

+ () * g'(x) *
A clarification on integrals

We are given that if F(x) is an antiderivative of f(x) then f;f(x)dx is equal to F(b)-F(a). We will discuss
more about how the integral is actually defined in a second appendix at the end of this level since
some theory from Appendix | will be needed, but we know this is equal to the area we want by the
fundamental theorem of calculus. However, first we need to show that F(b)-F(a) is well defined, since
F(x) is not the antiderivative of f, rather an antiderivative. The family of antiderivatives of f(x) is given by
F(x)+c. But, notice that in (F(b)+c)-(F(a)+c) the c’s cancel, so as long as we evaluate the difference
between an antiderivative when evaluated at b and a, we will get the same value regardless of which
antiderivative we use.

Fundamental theorem of calculus

There is another way to estimate the area of this same
strip. As shown in the accompanying figure, h is multiplied
by fix) to find the area of a rectangle that is approximately
the same size as this strip. So

Az + h) — A(z) = f(z)-h

Dividing by h on both sides, we get:
Alz +h) — A(z)
h

Alx+h)-Alx) = f(x)-h

~ f(=)

area=A(x)

This estimate becomes a perfect equality when h approaches 0:
ZAN .
h Az +h) - Az) g,
flz) = -‘llII(]i — = A'(z).
h—

o

Image to show
why FTC holds intuitively.

Note: A(x) is the area from a starting point, it doesn’t matter which starting point we pick, but it should
not be negative infinity like my A level textbook does, since otherwise A(x) would not always be well
defined!

Now one alternative way of stating the fundamental theorem of calculus is to say that f(x) is the
derivative of f;f(t)dt which is equal to F(x)-F(a) where F(x) is an antiderivative of f(x). Since F(a) is a

constant, we have that the derivative of F(x)-F(a) equals f(x).
Existence and uniqueness of e

Specifically, to prove that a number e with the property that the derivative of e* equals e* and that e is
the unique non-zero real number with this property. We work in the reals for now since for complex
numbers exponentiation is more complicated
Let’s try to find the derivative of c* for some arbitrary c real and > 1.

cXth_.x ch-1

lim = c*lim——
h—0 h h-0 h

For now, we assume the limit exists. It is not 0 since ¢*is not constant but its derivative would be 0 if

h_q 1 X
}llin(}cTwere 0. Let’s call this limit z. Then the derivative of ¢* is zc*. Consider (cz)* which equals cz



x X X 1
by laws of powers. The derivative of this, by the chain rule is (’Z—C)’(ZCE) = (i) (zcz) = cz.Thereforeczis

1 1
a number with the property that e has, ie the derivative of (cz)* is (cz)*.

4 ex — 4 (N = & xin()
Now suppose f also has the property that e has. Then dxf = (e ) =_-e

= "D Txin(f) =" Din(f) = f*In (f).

We see that by our assumption that f has the property that e has that f* equals its own derivative, we
must have (n(f)=1, therefore f=e, so e is unique.

For those of you who want to be particularly rigorous, to show that this limit exists, we will first note
h_

thatif h is positive then li}{no% is always positive since the numerator and denominator are both

positive as c*>c%=1 is implied by h>0 and the fact that clearly c"increases as h increases. We will

h_
show that % is increasing over the rational numbers. A function that is increasing over the rationals

and continuous (which this clearly is) intuitively (and provably) can’t possibly be not increasing over
the reals since the rationals are dense (ie there are rationals arbitrarily close/as close as we want to
any number), and a function that is increasing and has positive outputs for positive inputs cannot

h_q
possibly not have a limit as its input goes to 0 from the right, since the set of values CT for positive h

is bounded below by 0, then the fact that it has a highest lower bound is an axiom which is essentially
a reverse of the least upper bound property.

. a_1 _cb-1, . . .
Now what we need to actually show is that CT > CT if a and b are rational with a>b. Suppose kis a

common denominator of a and b so a=n/k and b=m/k for some integers m and n. Let x=1/k so a=nx

c™—-1 M1

< — We can expand these as follows:

and b=mx. Then we have to prove —

c™—1 =1 1+c*¥+- ¥
= *
nx x n

c™—1 =1 1+c*+-c¥mD
= *
mx x m

and it is easy to check that the product of the numerators and denominators match the numerator
and denominator of the original expression. We see that the second expression is larger since both

X—1 .. . . . . . .
are the same constant CT multiplied by something. In the first expression, this something is the

mean of 1, c%, ... c*™~1 and the second one is the mean of those terms with some terms that are
strictly larger than them, ie ¢*", ... c*(™~1D | so it is larger than the first mean, completing the proof of
existence of the limit.

Power rule (general case)

The derivative of x®with respect to x is given by ax®~for all a, provided a is a constant, so please do

not use this to try to find something like :—x (x*)

d _d 1 _da ]
a(xa) _;((e n(x))a) — a(ea n(x))



By the chain rule, we have that the above expression is equal to
. d
(ea ln(x))a (a *In (x))

To see this, recall that the chain rule says that for any 2 functions g(x), h(x), the derivative of h(g(x)) with
respect to x is given by g’(x)h’(g(x)). Let h(x)=e* and g(x)=a*Iln(x) and the expression above follows. Here

. . d
we use the fact that a is a constant to find that ™ (a *In (x)) =%

Therefore,

d ay — (,a*In(x) a_( mm\*, 2 _ a,%_ a-1
a(x)—(e )*;—(e ) *—= xx—= ax
Log derivative or 1/x antiderivative

One may try to integrate 1/x using the power rule. Here is why that goes wrong.
0
[Zdx=[xtdx=%+¢
x 0
Division by zero. The way | will approach this is by trying to differentiate ln(x) and showing that the
derivative is equal to 1/x. Suppose y = In(x), then

e =x

Note: Z& = 1 by the chain rule.
dy dx

The proper way to do arcsin derivative
Here we assume xis real and |x| < 1, as that is the domain that arcsin is typically defined.
y = arcsin (x)
sin (y) =x
Although sin(y)=x is implied by y=arcsin(x), the converse is not true, as discussed

dx

cos (y) = @

Here, many people assert that cos(y) = /cos2(y) = /1 — sin2(y), however the assertion cos(y) =
JJcos?(y)is only true if cos(y) is positive. Luckily it is, since the range of arcsin is by definition — g tog

where cos is always positive, but usually this step is not done properly. The result for the derivative of
arcsin follows, and the derivative of arccos can be derived in the same way, noting that sin is positive
and -sin is negative in the range of arccos.

Integration as the limit of a sum - Justification that the limit actually exists.



What | will do is consider f(ff(x)dx, which | will now assume is folf(x)dx since | can shift and scale
everything as needed. The integral is lim Z?;&%f(%). The image below shows what this sum looks like
n—-oo

graphically in the case n=10 and f is cosine. It may seem obvious that this limit exists, but that is
because what | have shown is a relatively simple function. | will prove that this works for all
continuous functions, but this is not obvious: What if the function was something like a fractal curve?

.
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So, what I will do is consider the sums made by making the rectangles i) just tall enough that they
always overestimate the function (as in the image above) or ii) just short enough that they
underestimate the function, and show that these areas in fact get arbitrarily close together if | make n
large enough. In particular, for any €, no matter how small, they will be within €. I’'ll call these upper
and lower sums U,, and D,,. We will need a lemma to do this, if you go to the level 6 technical results
document and scroll pass some scary stuff you can find the proof that every sequence that is
bounded has a convergent subsequence, which we will use. The proof only uses the fact that an
increasing sequence or decreasing sequence that is bounded converges, which we will explain later in
this level anyway.

Now we use the fact that the function is continuous. The formal definition of continuity, and hopefully
you can see that this is the same as the “you can draw it without taking your pen off the paper”
intuition, is the idea that the function is arbitrarily close to its value at some input x, provided the input
is sufficiently close to x. It is also the case (and this is intuitively obvious) that if a sequence
converges, ie x, = x, then f(x,,) = f(x) if fis continuous. This is because x,, can be made arbitrarily
close to x by convergence, and by continuity that means we can make x,, close enough to x that by
making n large enough we can make f(x,) as close as we want to f(x) so f(x,,) — f(x). Thisis where
| can do epsilon-delta stuff with words to make you see what’s really going on!

Now suppose there exists an € such that U,, — D,, > ¢ for infinitely many n, which is the opposite of
saying that eventually it is always less than €. Pick such an n. Then there must exist an interval for

k, k+1 . .
some k<n such that from - to %, the function has arange of at least €. If this were not the case, every

rectangles height would differ by less than € between the upper and lower versions, and therefore the
area of the whole figure would not differ by more than € since we are assuming its width is 1.

. k k+1
Remember, we are supposing U,, — D,, > €. So for some x,, and y,, between - and - we have

I, — yul < %trivially and |x, — y,,| > €. Now for all n, pick such an x,,. This has a convergent



subsequence by our lemma, so suppose thatis x,, , which converges to a limit L. Then

1 . . o
|xnk - ynk| < n—kfrom earlier, meaning y,, gets arbitrarily close to x,,, and thus also converges to L.

Therefore, by continuity, f(x,,) = f(L) and f(y,,) = f(L), but we assumed at the beginning that
f (%, ) and f(yn, ) were always apart by at least €, so they cannot converge to the same limit and this
is a contradiction.

Note that it is easy to see from this definition of the integral that indeed the fundamental theorem of
calculus is true whenever our derivative that we want to integrate is continuous or at least made up of
continuous function parts. We will not prove it in this level for more general cases than that since
those are never needed at A level.

Separation of variables

dy _ 1)
ax gy
I’m not sure how rigorous this is but I’'m sure it’s good enough. Note that here y is a function of x.

Suppose we know that we want to justify that [ f(x)dx = [ g(y)dy beyond notational tricks.

lim L&M=y _ f)
h—0 h g

by the definition of % We have that
_ dy
fe) =904

[rwix= [ g ax

Taking an antiderivative of both sides is allowed as since you add the +c when you find the
antiderivative so it’s just saying that two equivalent functions have the same family of antiderivatives.

The justification is: Consider [ g(y)dy. This is just G(y)+c, where G is an antiderivative of g. Now the
derivative of G(y) with respectto xis g(y) Z—i by the chain rule and thus [ g(y) %dx is also G(y)+c.

So we have that f:f(x)dx = f;((;)) g(y)dy for arbitrary a and b. If, say, a=0 then

fob f(x)dx = f;((ol;) g(y)dy so G(y(b))-G(0)=F(b)-F(0) where G and F are antiderivatives of g and f

respectively. We then see that G(y(b)) differs by F(b) by a constant which depends only on which
particular solution we consider, which is good enough.

Binomial expansion (positive integers)

We first motivate the definition of (2) What is the number of ways to pick r things from n things? Well,
we have n choices for the first thing, n-1 for the second, n-2 for the third, and so on. But, we could pick
the same things in a different order, so to take account of that we need to divide by the number of
orderings of r things, ie the number of ways we could list those same r things, which is r! (r factorial).
This is because | have r choices for the first thing in the list, r-1 choices for the second since | can’t use
the one that was first in the list, r-2 for the third, etc.

Now it should make sense why these are the binomial coefficients —if | have say (1+x)(1+x)(1+x)...(1+x)
with n (1+x)’s then the value of this is equal to the sum of products of one term per bracket, and the

x" coefficient is the number of such products that contain exactly r X’s is (™)



We also have this identity which proves the additive property of the entries of pascals triangle if they
were to be defined by these binomial coefficients.

('.'.' lJ {'.‘: 1) (r—1)! _ (rn— 1)
k k—1)  Bim—1-8 (k- 1)(n— &)

(n _13![ n—k  k
Elin— k) Ein - &)

TE

An intuition for this is also, if | am picking k things from n, the number of ways is the sum of the
number of ways to do it without picking the first thing, and the number of ways to do it with picking the
first thing.

Geometric series valid interval

Before reading on, try using your calculator to calculate the sum of the first few terms of a geometric
series with common ratio (i) 0.5 and (ii) 1.5. See how the values change as you add more terms. Can
you figure out why we need that for the infinite sum the common ratio has to be between -1 and 1?

The partial sums of a geometric series are given as follows, where the first term is a and the common
ratio is r and the sum of the first k terms is

a(l—r1k)
1-—r
Now note that as k goes to infinity, if [r|<1 then 7*=0 so the expression above actually approaches é

and conversely if it is not the case that |r|[<1 then the expression above will blow up to infinity as k
increases and not approach a limit. If you’re not sure why, consider what happens if you repeatedly
multiply by (i) something less than 1 and (ii) something more than 1, and (iii) the fact that if it’s
something negative you just have an alternating sign and who cares about that.

Integration by substitution

We prove the assertion below which essentially says that integration by substitution works as you

expect.
u(b) d u(b) u=b
[ rwenGeac= [ faw)m= [ rweo)
x=u(a) x=u(a) u=a

The justification is the same as what | did for the differential equations, where the steps here are
justified the same way as certain steps in that picture of the paper | took because | was too lazy to
type it out at 3 in the morning. (Hint: u here is like y there, f here is like g there).

Integration by parts
Product rule for differentiation says (u(x)v(x))’=u(x)v’(x)+u’(x)v(x) for functions u and v.

Now integrate both sides, or | like to call it finding the family of antiderivatives of both sides, giving



u(x)v(x) +c= fu(x)v’(x)dx + J v()u'(x)dx

Rearranging gives the integration by parts formula.
Volumes of revolution

Here you can see from the lazy quick sketch diagram below that the volume of revolution will
approach as the width of these cylinders gets small the sum of the volumes of the cylinders which are
each equal to my?dx and using the idea of integration as a sum from the separation of variables
section we see that summing these volumes and taking a limit as dx = 0 is the same as the integral
typically used which is [ wy?dx.

Image: Bad diagram of concentric thin

cylinders to illustrate why the formula works.

Volume of cone (GCSE but proven using A level stuff)

Intuitively, the volume should scale with the height times the square of the radius. The volume of a
cone with radius r and height h is equal to the volume bounded by the line segment connecting (0, r) to
(h, 0) after rotating it 21t radians about the x axis, as that volume is literally the cone on its side. The

2
equation for this line segmentisy =r — (%) x. We thus need to evaluate fohn (r - (%) x) dx.
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Volume of sphere (GCSE but proven using A level stuff)

Intuitively, the volume should scale with the cube of the radius. We find the volume of a semicircle
rotated 2m radians about the x axis, which is a sphere. A semicircle with radius ris given by y =

Vr2 — x2 (Note: This is a semicircle and not a circle because square root is defined as just the positive



square root). We then find the volume of the sphere using the volumes of revolution trick which gives
the volume of a sphere with radius r as follows

,
nf (r? — x®)dx
-r

—x “rZ(r) - 7‘3_3] - er(—r) - (_; )3”
|13 [

3
=—-nr
3

Surface area of sphere (GCSE but proven using A level stuff)

Intuitively the surface area should depend on r2. As r changes what is the rate at which the volume of
. . d . . . . .
a sphere changes, ie what is d—‘;? Visualise this scenario in your head and realize that the rate of

change of volume at any instant should be the surface area, as the corresponding change in volume
when we change the radius by dr is, informally, like a thingy which thickness dr, area of the surface

area, and volume dV. We find that Z—Z is 4mr?using the power rule for differentiation.

Curved surface area of cone (GCSE but proven using A level stuff)

Imagine taking the surface of a cone and cutting it as shown in the image below

Sector

A B

Then the distance from the point at the top (the center of the resulting circulararc)to Aand Bis |, so L
is the radius of the resulting circle. The circumference of the circle at the bottom of the cone is 2nr
and hence 2mr is the curved arc length of the resulting circular arc. Therefore, the angle in radians

. . .2 .
traced out by the resulting circular arc is ? Hence, by the formula for the area of a sector, we just
1 2
need =ml? <= = nrl.
2 l
Iterative formulas/Numerical methods

| have a video on this, where | demonstrate that under certain conditions with the function and its
derivatives, iterative formulas and newton raphson work.

Trigonometry addition formulae

So basically what you need to know is that i is an imaginary number defined by i = +—1, and we often
draw numbers of the form a + bi as the point (a,b) in a 2D grid (an argand diagram). Now we consider
a very important geometric intuition about multiplying complex numbers. Some textbooks give a



geometric proof, but this proof justifies it for all angles, not just angles between 0 and 90 degrees, and
is much more beautiful.

In order to understand this, you should either try to visualize or draw this until it makes sense to you.
3blue1brown’s lockdown math explains all these concepts beautifully, but | cannot guarantee that
those will exist since | am not affiliated with 3blue1brown nor youtube.

When you multiply 2 complex humbers a*b, what you can think of is that you stretch and rotate the
entire argand diagram such that the number 1 lines up with the number a, then go to the number b on
that new argand diagram. Note that i(a+bi)=ai-b by algebra. Draw a+bi and ai-b on an argand diagram
and try to convince yourself that they are always perpendicular. Now the reason my trick from earlier
works is becauseif you have a(x+yi) this is ax+ayi. Because moving on path 1 then path 2 on an argand
diagram is the same as adding the numbers given by path 1 and path 2, we have that if you move |a|x
units in the direction parallel to a then |a]y units in the direction perpendicular to a. It should hopefully
be clear that this gets you to a(x+yi) in the normal grid and x+yi in the grid stretched and rotated
(specifically, stretched by a factor of |a| and rotated by arg(a) radians).

Now consider the function cos(x)+isin(x) with x real. This is the function you get from walking x radians
around the unit circle anticlockwise, since on an argand diagram if | have the function you get from
walking x radians around the unit circle then indeed you can see that cos(x) will be the real part and
sin(x) will be the imaginary part. You can draw a diagram to convince yourself of this.

Now consider (cos(x)+isin(x))(cos(y)+isin(y)) with x,y real. Using the multiplication trick from earlier,
what you should do is rotate the argand diagram x radians so that the point 1 on your rotated grid
corresponds to the point cos(x)+isin(x) on your original argand diagram. Then you can see that the
point cos(y)+isin(y) on your rotated diagram is gotten to by walking form the original point 1 x radians
anticlockwise then y radians anticlockwise, so you walk x+y radians anticlockwise. This is significant
because you then end up at the point cos(x+y)+isin(x+y), which intuitively establishes the following
identity:

(cos(x)+isin(x))(cos(y)+isin(y)) = cos(x+y)+isin(x+y)

Notice how this behavior is similar to exponentials. We will expand on this idea in the exponentials
and logarithms video.

Now expand the left hand side, noting that i?=-1 by definition, then we have
cos(x)cos(y)-sin(x)sin(y)+i(cos(x)sin(y)+sin(x)cos(y)=cos(x+y)+sin(x+y)
Equating the real and imaginary parts to eachother gives the desired result.

Below is an illustration for both the multiplication idea with the example (3+4i)(2+i) and in the case of
multiplying on the unit circle. (Grids not accurately drawn)



Image: Shows rotated and stretched
grids on an argand diagram to visually show my point, with unit circles and stuff included in the
diagrams.

As an extra challenge for capable/interested people, can you use these ideas to find that %\/7(1 +1i0)

are two square roots of i and that two other cube roots of 1 that are not just 1 are given by — % + %\/?i

without directly computing the squares or cubes but rather using the ideas above and known sines
and cosines of certain angles? This is just an exercise and these ideas will be covered later level 5 and
are covered in the previously mentioned lockdown math youtube videos anyway.

Sine and cosine derivatives

You can use the addition rules proved above in the definition of the derivative, but then you have to
prove the following results to get the full result

sin (h)

lim cos(h)-1

h—-0

= 1andlim 0
h

-0

Below is an illustration/geometric intuition for both of these results, with some algebra used.

Image: Geometric proof of these limits.

Note that these last few proofs may be longer and harder to follow than the previous ones. For partial
fractions, you may be satisfied with just knowing that you can always check by hand that your partial
fractions indeed equal the original fraction, but | will prove why it’s done the way it’s done.



Dot product equivalence between algebraic and geometric definition

| will give two proofs of this, because although one proof would be sufficient, | think they’re both pretty
cool.

If we start from the geometric definition, then from this picture, you can see that the length of a vector
a when projected onto the line in the direction of another vector b has length |a|cos(AOB).

Now hopefully you can see that if | add a vector c to a vector a, then the amount that the length of its
projection in the direction of b will change by will be equal to the length of the projection of c onto b
(which will be negative if c is facing away from b).

So hopefully you can see visually that |a]Jcos(AOB)+|c|cos(COB)=|a+c|cos((A+C)OB). Multiplying both
sides by |b| and then substituting in the dot proudct definition gives the important identity
a.b+c.b=(a+c).b.

Now, observe that the basis vectors i.i, j.j, k.k are all equal to 1 because, egi.i=|i||ilcos(0)=1. However,
i.j, i.k and k.j are all equal to 0 because, eg, i is perpendicular to j so the cosine of the angle between
themis 0.

Now, lets say for example that v and u are 3 dimensional vectors and we want to compute v.u. We can
write both v and u as ai+bj+ck and di+ej+fk respectively for some numbers a, b, c, d, e, f.

Then v.u
=(ai+bj+ck).(di+eg+fk)

=(ai).(di+ej+fk)+(bj).(di+ej+fk)+(ck).(di+ej+fk) where we have used the fact that we can split the dot
product up like this as we just demonstrated,

=ai.di+ai.ej+ai.fk+bj.di+bj.ej+bj.fk+ck.di+ck.ej+ck.fk

=ad(i.i)+ae(i.j)+af(i.k)+bd(j.i)+be(j.j)+bf(j.k)+cd(k.i)+ce(k.j)+cf(k.k). Using the fact that i.i, j.j, k.k=1 and
everything else is 0, we get

=ad+be+cf, so we can indeed sum component-wise.

Note that we can move numbers outside of dot products like this: av.bu if vand u are vectors and a
and b are numbers is equal to |av||bu|cos([aV]O[bU])=|ab]||v]|u|cos([aV]O[bU]). Note that [aV]O[bU] is
equalto VOU if a and b are positive since we’re just shrinking av and bu. If a and b are both negative
we are flipping everything around. In either of these cases we also have that |ab|=ab since aand b
have the same sign, so av.bu=ab|v||u|cos(VOU)=ab(v.u). If a and b have opposite signs then we are
flipping one of av and bu to the other side, so the cosine of the angle changes sign, but also |ab|=-ab in
this case so the minuses cancel out and we still have that av.bu=ab(v.u).



The second proof starts by assuming that we can in fact get the dot product by summing component-
wise, then derives a.b=|a||b|cos(AOB). So, a.a is the sum of the squares of the components of a, which
by pythagoras is in fact equal to the square of the length of a. But if we have a triangle ABC, then by the

2 —_— —
cosine rule we know that |B_C>|2 = |Ac| + |AB|2 — 2|AC||AB|cos(BAC). Now we can do some algebra
on this:

—

|aC|” + [4B|” — 2|AC||AB|cos(BAC) = AC.AC + AB.AB — 2|AC||AB|cos(BAC)

But this is also equal to

[BE|” = |AC —4B|” = 4C — AB.AC — AB = AC.AC + AB. 4B — 2AC.AB
Therefore everything in the two lines above is equal to eachother, so
AC.AC + AB.AB — 2|AC||AB|cos(BAC) = AC.AC + AB.AB — 2AC.AB
And then cancelling stuff gives that in fact
AC.AB = |AC||AB|cos(BAC)
And since A, B, C could be anything, this therefore must hold for all vectors. So done.
Generalized binomial theorem

The generalized binomial theorem is a special case of a concept called a Taylor series. A Taylor series
is essentially when we have a function and we use the following method to try to fit an infinite
polynomial to the function f(x): Let the constant term of the polynomial be f(0) so the functions and
our polynomial at least match in terms of their value at x=0. Now we let the coefficient of x in our
polynomial be f’(0) so our polynomial and its slope at x=0 match that of the original function, so if we
zoom into the graph enough that f looks like roughly a straight line (since we are assuming fis
“smooth” using the intuitive informal definition) our polynomial will be a decent approximation for f.

Now we let the term in x? of our polynomial be %f”(O) so that the second derivatives at x=0 match.

We keep doing this until we get an infinite polynomial, and the hope is that this polynomial well
approximates the original function as we add more terms, and that in the limit the infinite polynomial
we get equals the original function. The infinite polynomial we get is called the Taylor series of the
function. This is true in a lot of cases, and we prove it for the binomial theorem (1 + x)™ as that is used
at A level, as the binomial expansion is actually the Taylor series of (1 + x)™ for general n.

However, we do not always need to have the series centered at x=0. The general form of a taylor series
. / (x_xo)z " (x—x0)3 " (x=x0)" (n) h -

is f(x0) + (x — x0) f"(xp) + Tf (x0) + Tf (x0) + -+ Tf (xg) + -+, whereitis
immediate that at x,, the function’s value and all it’s derivatives (first, second, etc) all agree with the

taylor series (provided it converges in an interval around x,), but it is not obvious that this happens at
other points.

We prove that (1 4+ x)™ actually equals its Taylor series when |x|<1. Consider this: It can be shown
using standard A level techniques that the unique solution to the differential equation

dy ny
dx 1+x




that satisfies y=1 when x=0is y = (1 + x)" (you should be able to show this), and that if

nn—1) e nn—1)(n-2)

3
21 30 X+

y=1+nx+

Then the differential equation above is satisfied (I will walk through this part)

Goal: To show that this satisfies the differential equation above with the initial conditions so it must
equal (1 + x)™. Trying to differentiate this power series will give

d—y=n+n(n—1)x+n(n_1)(71_2)362_l_n("_1)(”—2)(n—3)x3
X—y=nx+n(n—1)x2+n(n_1)(n_2)x3+n(n_1)(n—2)(n—3)x4+

(1+x)j_z:n+nx+n(n_1)x+n(n_1)x2+n(n—12)!(n—2)x2+n(n—12)'(n—2)x3

nn—-1Mn-2)(n—-3) , n(n—l)(n—Z)(n—B) n(n—l)(n 2)Y(n—=3)(n - 4)
* 31 o 31 41

+ .-

This looks complicated, but don’t worry, it simplifies nicely.

1+

(1+x)——n+nx(1+(n—1))+n(n_1)x ( 22>+n(n—1)(n—2)x ( n;3)

nn—1)Mn-2)(n-3) , n—4
+ 3 b (1+ Z )+

nn—1Dn-2) , nn—1n-2)(n—-3) ,m

2! * (§)+ 31+ 4 * (Z)+"'

nn—-1) , nnh-1n-2)
T 3]

=n+nx(n) + n(n— 1)x? (2) +

=n(l+nx+ x3 4

So we satisfy
dy
1 —_—=
1+x) -

which is a rearrangement of the original differential equation. However, we’re not quite done, since
although the derivative of the sum is the sum of the derivative for finite sums, I have just used it for an
infinite sum and I have not yet justified it. In general in maths, it requires justification to extrapolate
anything finite to anything infinite. We also haven’'t addressed why this expansion is only valid if |x|<1.

Before reading on, try using your calculator to calculate the sum of the binomial series for (1 + x)‘°'5
at (i) x=0.5 and (ii) x=2. See how the values change as you add more terms until the term in x>. Can you
guess why x has to be between -1 and 1?

Note: Since calculating the coefficients is not the point of this exercise, I’'ll give that the series is

(14+x) 05 =1 —Zx42x2—2x3 4 24 - 245 4.
2" s 16* T 256

Consider the ratio between, say, the x?° coefficient and the x1°°coefficient. In order to get from one
coefficient to the other, we need to divide by 100x and multiply by n-99. So, since n is fixed, the ratio
which is %will approach -x as “100” and “99” get larger and larger. The takeaway should be that only

when x is between -1 and 1 does the ratio approach between -1 and 1 meaning the terms get smaller in



size so the sum doesn’t go off to infinity. For positive integer exponents the series is valid everywhere
sine the terms eventually are all 0.

The formal justification for why we can differentiate an infinite power series and why it indeed
converges with a rigorous proof and not a hand waving argument when x is between -1 and 1will be left
as an appendix, since it is technical and not part of the “core” of this argument. These last few
paragraphs relate to an area of maths called analysis.

For other taylor series which are typically only used in level 5, here is the differential equation used to
prove their correctness, note that the full justification is also given in the appendix.

d ) . .
e*: ﬁ = y and y=1 when x=0 (Always converges since the ratio of consecutive terms always -> 0)

In (1+x): Z—z = ﬁ and y=0 when x=0, or from differentiating the series for (1 + x)~! (Also valid

when |x|<1)

sin (x) and cos (x): Comes from Euler’s identity e = cos(x) + isin(x) which we will prove in the
video in the section on exponentials and logarithms, then equating the real and imaginary parts.

(Always converges since the ratio of consecutive terms always -> 0). Alternatively, you can use the

2
differential equation ZTJZ] + y = 0 with the initial conditions satisfied by sin and cos when x=0. We
learn how to solve this differential equation above and differential equations like it in levels 5 and 6. It

is ok for us to not develop this theory here because itis only in those levels where you are actually
expected to know the series for sin and cos.

Partial fractions

This one is tricky, in the exam if you’re satisfied just knowing you can check manually that your answer
works then great, but here we will justify why we use the method that we do.

The precise statement we want to prove is as follows:

If we have a fraction like

P(x)
(x —a)™(x —az)™ .(x — a,)™

Where P(x) is a polynomial

Then it can be written in the following form

b1 bz cee —bm1 -
Q(x) + o + —ap)? + -+ —ay)™ +(n-1 more analogous sums for the rest of the roots ay)

Where Q(x) is a polynomial.

Note that this is an extremely general statement, in A levels n and the m’s will not get bigger than 2 or
3.

Definition: the degree (often called deg) of a polynomial is defined as the highest power of x that
appears.

Note that if we divide P(x) by the denominator of our original expression, we will get a polynomial Q(x)
(which will be 0 if P(x) has a lower degree than the denominator) and a remainder divided by the



denominator of the original expression, where this remainder will also have a degree lower than the
degree of the denominator (Otherwise we could keep doing long division on it until the degree is
lower). Therefore we can assume that P(x) has a degree lower than the denominator and then prove
that we get the not Q(x) terms.

In order to do this proof, we will need to use a collorary of Bezout’s identity, essentially the assertion
that if P;(x) and P,(x) are polynomials with no roots in common (which by the factor theorem is
equivalent to having a greatest common divisor of 1) and that they are both of the form
C(x—ay)™((x—ay)™..(x —a,)™ (ie a product of linear factors) then there exist polynomials A(x)
and B(x) such that AP; (x)+BP,(x)=1. It turns out that the assertion that the polynomialis a product of
linear factors is true for all polynomials and this is called the fundamental theorem of algebra,
however this is not needed for our purposes, so although there are nice proofs of this fact, we will do
them in a later document since this is long enough, so we will add the condition that P; (x) and P, (x)
are products of linear factors so this way there are no implicit assumptions, and it will be enough for
our proof. We also do not have uniqueness of polynomial factorization fully proven, but the factor
theorem means nho common roots is equivalent to no common factors.

First, we will do a proof assuming the fact above, then we will prove it. We define that the Euclidian
division of a polynomial P by a non-zero polynomial T is defined as P=TQ+R where R is a remainder
polynomial with deg(R)<deg(T). You can see that surely this must always exist if you’ve ever done
polynomial long division before and you think about it hard enough.

Now | will define F as the numerator of the original expression which by assumption has degree lower
than the denominator of the original expression which | will call G. | will then define G; = (x —a;)™
and G, = (x — ay)™(x — az)™s ... (x — a,)™. Since the a’s are distinct, G; and G, have no common
roots, so Bezout’s identity applies. Let CG;+DG,=1 then we have the following:

Let DF = G1Q + F) with deg F; < deg G be the Euclidean division of DF by G1. Setting F, = CF + QG3, one gets
F F(CG:+DG») DF N CF

G G1 Gy TG Gy
_R+GQ  F-GQ
G, G,
F F
"6 9t ¢
T 2
-t

It remains to show that deg F> < deg G2. By reducing the last sum of fractions to a common denominator, one gets
F = F,G{ + F1G4, and thus

deg Fy = deg(F — F1G,) — deg G; < max(deg F, deg(F;G>)) — deg Gy
< max(deg G,deg(G1G2)) — deg G; = deg G,

The last line follows from the fact that clearly the degree of the product of polynomials is the sum of
the degrees so therefore deg(F — F;G,) = deg(F,)+deg(G,), since we have F = F,G, + F,G,
soF — F]_Gz=FzGl.

Then the next step is because the degree of the difference of two polynomials can’t be more than the
degree of both of them, then the next step follows because by earlier assertions it follows that the



degree of both things in the max() are decreasing in the step given, and in fact now both equal to
deg(G). Since G = GG, by definition, we have deg(G)=deg(G,)+deg(G,) so the last step follows.

Applying this again to the fraction Z—z and then iteratively doing this n times we get the following:
2

P(x)
(x —a))™(x —ax)™ ...(x — ap)"™n
_ Ty (x) L1C IR 1€
=00+ Gapm T G T e

Where each T polynomial has degree less than its denominator. It remains to show that each of these
can be broken up into constants divided by powers of the respective linear factors. | will show how
this is done for the first fraction and the method for the rest of them is analogous. If m;=1 then we’re
done, so suppose m;>1 so T; (x) has degree at most m; — 1.

We canwrite Ty (x) = ag + a;x* + azx® + -+ a,,,_1x™ " ! where each a can be 0 or anything else. Now

just watch this

T (x)
(x —a)™

ap + a;xt + azx? + - apy, g x™1
(x —a)™

Ao+ arxt + apx® + XM —ay (x—a))™T a4 (x—a))™?
- (x —a;)™ (x —a)™

Notice that the degree of the first term is at most m; — 2 because the coefficientin x™11 is being

cancelled. Let’s suppose the new numerator of this firstterm is by + b;x® + byx? + -+ bml_zxml‘2

_ bO + b1X1 + bzxz + bml_zxml_z + am1_1

(x —a;)™ X—a
Now do a similar trick:

_ by + bix + byx? + by _pXx™ 72 — by (X — )™ 7% by o(x—a)™ ™ a4

(x—a))™ (x—ay)m X—a

bm1—2

G—al)? term after cancelling
—“1

Now the degree of the first term decreases again, and we get a

(x — a;)™~2 from the numerator and denominator of our second term, and we can keep decreasing
the degree and getting a constant over the next power m; times until we get the desired result.

Proof of part of Bezout’s identity for the partial fractions proof

Ok so we have two polynomials which are products of linear factors and have no roots in common.
Call the one with larger degree P; and the one with smaller degree P,. If their degrees are the same it
does not matter what we call them. Now do Euclidean division: P; = Q{P, + R; where
deg(R,)<deg(P;). Now we work with polynomials R; and P, and do the same thing, except now the
smallest degree of the two is lower. We get P, = Q,R; + R, and then do the same with R; and R,and
again the smaller of these (R,) has a smaller degree than the smallest degree of the previous two we
worked with. Keep doing this until the remainder is a constant. Here is an example where for two



polynomials with no common root we explicitly find polynomials such that 1 equals a polynomial
times P; plus a polynomial times P;:

PL=(x—-1)%*x—-2),P,=(x+1(x+3)
Py =x*—4x*+5x—2,P, =x*+4x +3

x3—4x?4+5x—2=(x—8)(x%? + 4x + 3) + (34x + 22)

+ax+3 (1 +57>(34 22y + 220
xfax+3=(gpxt oo ) (G4x 289

Now we are done, since we can express % as 34x + 22 times a polynomial plus x? + 4x + 3 times a

polynomial (by rearranging the bottom equation) but then we can express 34x + 22 as x? + 4x + 3
times a polynomial plus x3 — 4x2 + 5x — 2 times another polynomial (by rearranging the second

equation from the bottom). This means that our original target, zisg equals x? + 4x + 3times a
polynomial plus x3 — 4x? + 5x — 2 times another polynomial. Simply multiply these polynomials by

240 .
2—89then we’re done, in fact we get:

240 1 57
289—X +4x+3—<§x+%)(34x+22)
289 2891 57
1=m(x +4X+3)—%<ﬁ 578)(34X+22)
1=@(x2+4x+3)—@(i 57)(x —4x% +5x — 2 — (x — 8)(x? + 4x + 3))
240 240 \34 578
1—£(x +4x+3)—@<i 57)(x — 4x? +5x—2)+@(i 57)(x—8)(x + 4x + 3)
240 240 578 240 578
17 57 17 79 61
- (480 +4To)(x - +5x_2)+<480x2_480 240)(x Tax+3)

1=_<£ 57)((x_1) (x—2)) (17x2_79

280~ T 280 480" 480 240) ((x+ Dx+3))

. . . . 240 . .
Note that it remains to show that we always end up with a constant like 289 that is not zero, otherwise

we can’t divide by it like in the example above!

Any two pairs of polynomials we work with will not share any common factors, since lets say for the
sake of example that R; and R, shared a common factor, then R, which is a quotient polynomial times
R; plus R, will have that factor, then R; which is a quotient polynomial times R, plus R; must also
have that factor, and we keep going until realizing that by this reasoning our original P’s must have had
that original factor. If R,, was a polynomial of degree at least 1 but then R, ,; was suddenly 0 and not a
non-zero constant, then that would mean that R,, would divide R,,_; with zero remainder as we would
getR,, = QR,,_; + 0, meaning R,, and R,,_; share acommon factor of R,,_; which is a contradiction,
as our original P’s were assumed to have no common factors.

More on exponentials and logarithms

This is explained in a video (which is quite involved), but consider the following motivating question to
see why further discussion on this is needed:



dy
If we have ==
Then the standard separation of variables method gives f%dy = [1dx

So In(y)=x+c
Soy =e%e€

But then we say that y = Ae* for any A, but if we are working in the real numbers e€ is always positive.
It turns out that y = —e* does in fact satisfy the differential equation, but itis not at all obvious how it
isn’t absurd to say A=-1 when A was derived from the exponential function which does not appear to
take negative values. After all, e” is clearly always positive from the graph! But, things are not always
as they seem.

The video derives from basic exponent laws what it means to take a positive real number to a non-
integer real power, and then defines exponentiation with complex exponents and extend the definition
of powers to the complex numbers. | define the complex logarithm and the problems that come from
it being multi-valued or having a branch cut. | explain which exponent and logarithm rules work in the
complex numbers and why. | then discuss a bit about the integral of 1/x and give a better explanation
for the ln(|x|) standard answer. | do a brief aside on contour integration (Don’t worry if you don’t
understand this, | explain it again in the technical results document. Hopefully you understand it
then.) since it will be used in a later proof, then finally go back and answer the motivating differential
equations question above.

Appendix: Binomial theorem technical details (If everything else wasn’t basically an analysis
course in disguise, this definitely is)

First, we will tackle the problem of showing that the binomial series always converges if |x|<1.

We have established that the ratio of consecutive terms in the binomial series approaches -x, formally

the ratio is given by n—?:—l) between the x4 and x4~ terms. The difference between this and -x is
AX |y = A0 @Dx x| pich gets as small as we want if we make A large enough.
n—(A-1) n—(A-1) n+1-A4

x(n+1)

Formally, we can see that for any &€, no matter how small, if Ais atleastn + 1 + then the ratio

between consecutive terms will always be within ¢ of -x. This is what it formally means to say that the
ratios will converge to -x in the limit. Now we show that if in a series the ratio of the terms approaches
in this sense a value with absolute value less than 1 (which we have shown that the binomial series
does when |x|<1) it converges, and in fact it is absolutely convergent, meaning that the sum of the
absolute values of the terms converges, which will be important later. Note that absolute convergence
implies convergence as informally by the triangle inequality the “tails” of the original sum are less big
than the “tails” of the sum of absolute values.

First, we see that ).;"_, |a,| converges if% is always less than some number c which is less than 1
n

because Yo, ¢ 1|a,| converges by geometric series and the sequence Yo, |a,| is a sequence of
positive numbers where since ¢" !|a,| = |a,| by definition we have that Y5, |a,| is a limit of
increasing positive numbers bounded above by Y, ¢ !|a,| so the values Y-, |a,| for different m’s
must have a least upper bound (This is obvious and often a first principle/axiom) so that is what it
approaches as m goes to infinity, ie Y.5—; |a,| converges.



Now we see that ),,_, |a,| converges if % is eventually (ie whenever n>k for some k) always less
n

than some number c which is less than 1. This is because we split the sum into the first k terms (which

converges as it is a finite sum) and the rest of the terms (which converges by the fact above). Now we
see that };;—; |a,| converges if% approaches a number less than 1. This is because, for example,
n

lets say it approached 0.5, then by the definition of approaching it will always be eventually between
0.25 and 0.75 and we apply the thing above.

Also, if [x|>1 the terms eventually continue to grow in magnitude as their ratio eventually becomes >1
for all terms after a certain point so the binomial series can’t possibly converge.

Ok so now we know that the binomial series converges absolutely if x is less than 1. Now | will explain
why absolute convergence is important.

When we justify differentiating a power series we will be working with sums. We note that intuitively,
we know that if we rearrange the order of the terms in the sum, the sum will not change. However, this
is not always true for infinite sums. For example:

Consider the infinite series

Let us designate the given series by S. Then

(3)5:1_1+l_l+l_l+l_l+l_i+
2 3 4 5 6 7 8 9 10

2 2 2 2
S+
5 6 7 8 9 10

2 2

b)2S=2-1+2-2+

— 142 ryz ry 2z 1.,z 1,
3 2 5 3 7 4 9 5
[First multiply S by 2 and then simplify]
(c)25=1— % + (2 — i) - i+ (é— é) + .- [Rearranging]
(d)25=1- §+ g — i + % + - [After simplification]
(e)25=S [Using (a)]

We conclude that 1 = 2!

Fun fact: it turns out that S=Ln(2)

However, if you take the absolute value of all the terms in the sum, then the sum is well behaved and
will equal the same value no matter how you order the terms. The proof of this will use a formal
definition of convergence, and the triangle inequality which says that

la; +a; +az + -+ ay| < |aq| + |az| + |az| + -+ + |a,]

The reason for this is (using complex numbers ideas) because the first expression is like walking a
distance of |a,| in some direction in the complex plane, then a distance of |a,| in some other
direction, then a distance of |az| in some other direction, and so on, then recording your distance
from the origin at the end. The right hand expression is like walking all of those distances in the same
direction and then recording how far you’ve walked, which intuitively will always be a distance at least
as long. This will be used in the proof below (Note: The triangle inequality is true for infinite sums, as
the sumtonof |a; + a, + az + --- + a,| is less than or equal to the sum to n of

la;| + |ay| + |az| + -+ + |a,| for all n so in the limit as n goes to infinity (ie the infinite sum) the latter
expression cannot possibly be less!) Now here is the proof:



Images: Handwritten proof absolute

convergence implies stuff plays nice.

Ok now that that’s done here is a proof we can differentiate infinite power series in the usual way
under certain conditions. We call the radius of convergence of a power series R where R is the largest
value such that for all x such that |x|<R the power series converges when evaluated at x. We know that
for the binomial series R=1, and we will show that differentiation of power series works when x is
within the radius of convergence. Here are some things we will need:

b —a™ —n(b—a)a" ! = (b—a)?(b" "2 +2ab"? +3aZb" " -+ (n—1)a""?).
Proof. If b = a, we are done. Otherwise,
b — a™
b—a
Differentiate both sides with respect to a. Then

— bn—l + abﬂ—ﬂ + GZb'n—S + -4 an—l.

—na™ (b —a) +b" —a®

(b—a)?

— bn—? + 2&bn_3 + - + (ﬂ, —_ l)ﬂn_z-

Rearranging gives the result.



This implies that
24+ h)" = 2" —nhz" P =R ((z 4+ h)"F 4+ 22(z 4+ )" 4 - 4 (n = 1)2"7F),

which is actually the form we need.

Lemma. Let a,z" have radius of convergence R, and let |z|] < R. Then
S na,z""! converges (absolutely).

Proof. Pick r such that |z| < r < R. Then }_ |a,|r™ converges, so the terms
|ay,|r™ are bounded above by, say, C. Now

n—1 n—1
z C z
E nlapz" | = E nay,|[r™ ! (g) < - E n (¥)

n—1
The series > n (l l) converges, by the ratio test. So 3 n|a,z""!| converges,

by the comparison test. O

Note: the comparison testis the idea that a sum of positive terms bounded by a convergent sum of
positive terms must be convergent, because the first sum’s partial sums (sums up to n) are bounded
above so they have a least upper bound which they must converge to.

Corollary. Under the same conditions,

i (;) a2 2

n=2
converges absolutely.

Proof. Apply Lemma above again and divide by 2. O

Note: in the image below, something being o(h) means that something divided by h approaches O as h
approaches 0, in other words it gets small “much faster than h”, and by rearranging, you can see that
the thing it says we want to be o(h) being o(h) means the difference between the actual derivative in
question and the derivative we want is indeed zero.

Theorem. Let ) a,2z" be a power series with radius of convergence R. For

|z| < R, let
Z a,z" and g Z na,z"

n=0 n=1

Then f is differentiable with derivative g.

Proof. We want f(z + h) — f(2) — hg(z) to be o(h). We have

f(z+h) = f(z) —hg(z) = D an((z+ h)" — 2" — hnz").

n=2

We started summing from n = 2 since the n = 0 and n = 1 terms are 0. Using
our first lemma, we are left with

h? Z an z+h)"" 24 2z(z + h)n_3 +oo 4 (n— 1)2?1—2)

n=2

We want the huge infinite series to be bounded, and then the whole thing is a
bounded thing times A2, which is definitely o(h).

Pick r such that |z| < < R. If h is small enough that |z + h| < r, then the
last infinite series is bounded above (in modulus) by



o0 oo
=2 n—2 P =2y n n—2
Z|an|(? + 27 + o4 (n—1) )—Z|an|(‘))r .

n=2 n=2 -

which is bounded. So done. O

Interestingly, by taking the antiderivative of the binomial series for (1 + x) ! we get a taylor series for
In(1+x) valid when |x|<1, and it turns out that this series converges when x=1, and while the full
justification will not be given here (see Abel’s theorem for power series), this is an intuition for the
“Fun fact: S=Iln(2)” fun fact above. It really is all related!

Note: Differentiation of power series multiplies the ratio between consecutive terms by n/n-1 and
shifts the terms by 1, so if the ratio approached something less than 1 or more than 1 that property will
still hold after differentiation, therefore the radius of convergence of the differentiated or
antidifferentiated power series is the same as the radius of convergence of the original power series
(This argument works for the “usual” functions where it is the case that the ratio between consecutive
terms approaches something, but the statement is true more generally even in some cases where this
argument does not work, but you do not need to know this for A level).

Appendix ll: More on the definition of an integral

The above definition of the integral (The riemann integral) is perfectly good for continuous functions -
we just showed that. However the modern definition of the integral (The lebesgue integral) is
something which is easy to see (once we actually define it) is the same as the riemann integral for
continuous functions, and even functions that are defined by many continuous parts, but it is defined
for more diverse functions and we will need this definition when we justify stuff in statistics 2 levels
from now. We need some preliminary definitions.

Definition: Pointwise supremum

Suppose | have a sequence of functions f; (x), f2(x), ... then the pointwise supremum is the function
g(x) such that g(a) is the least upper bound of the values f; (a), f5(a), f5(a), ...

Definition: Indicator function

Anindicator function is a function that takes the value 1 if the input is in the set, and 0 otherwise. For
example, the indicator function for the set (0,1) U (1.5,2) looks like this:

Image: Shows the graph of this indicator function: 1in
the interval, 0 elsewhere.



Here, | am estimating the integral f03 3x — x%dx by a linear combination of indicator functions. The
integral of an indicator function is defined as being equal to the total length* of the sets in question,
and in the image below we see that we have approximated the area by taking a bunch of indicator
functions, multiplying them by something, and adding them together.

L 2 é\ Image: Shows the integral of a graph approximated

below by rectangles, instead of tall and thin they are short and thick.

* For pedants, at this level, your intuitive idea of length is enough, | believe that trying to give the
rigorous definition would make everything here more complicated than it needs to be for the intended
audience and wouldn’t add much substance to the proofs we will do. It is also true that not every
subset of the reals has a well defined length, however it is true for all functions we will work with in
this level and level 6. All theorems in level 6 that use this definition of the integral only apply to
functions or probability distributions such that this is the case. Times when this is not the case are
very strange and will not come up in anything we do in this level.

Notice how the image above is an underestimate since our linear combination of indicator functions
never exceeds our function. The integral is then defined as the least upper bound of the area we can
get by underestimating it this way. That’s the formal definition of the lebesgue integral.

Definition: Simple function
A simple function is a linear combination of finitely many indicator functions.

The riemann integral definition on continuous functions gives the same value because each of the
rectangles can be considered to be a simple function and we just want the least upper bound of
combinations of areas of those that are below the function, but the lebesgue integral is more diverse
as the indicator functions do not need to be of intervals —they can be of more exotic sets provided
their length is well defined. Adding in such indicators to a riemann integrable function does not
increase the least upper bound because we can bound the integral above as close as we want to this
least upper bound. To put it another way, it is like the image above has a riemann integral value of 4.5,
so | can make a simple function our of rectangles of area 4.5000000000001 that is always larger than
that parabola (since it is continuous) and say Hey, if you want a larger integral you have to go outside
these at some point, so your least upper bound cannot exceed 4.5000000000001, and | can do that
forvalues as close to 4.5 as | like.



