
STUFF HIGHLIGHTED IN PINK WILL BE MOVED TO LEVEL 3 WHEN THAT LEVEL IS DONE. 

Prime factorization (GCSE) 

Clearly for every number a factorization into primes exists – I can take any number and make a 
factorization by repeatedly factoring its factors until I can’t anymore, which will be when the factors 
are prime. Now I will prove that this can be done in a unique way. I use the fact that clearly 1 and 2 
have a unique factorization (1 factors as no primes and 2 factors as just 2) and I show that all numbers 
have a unique factorization by showing that if all numbers 2,3,4,…,n have a unique factorization so 
does n+1, as then 2 having one implies 3 does, 2 and 3 having one implies 4 does, etc. This type of 
logic is known as induction. 

 

 

 

Sum of polygon angles (concave case) (GCSE) 

We use the same principle of induction that we did for the prime factorization proof. We want to show 
that any n sided polygon can be triangulated into n-2 triangles like in the image below, where each 
vertex of each triangle is a vertex of the original polygon. 



Image: Shows an example of triangulating a polygon. 

And then we see that the sum of the interior angles becomes 180(n-2) as the sum of the interior 
angles of the original polygon must be equal to the sum of the interior angles of the n-2 triangles, 
which clearly is 180(n-2) by the above convex case as triangles are indeed convex. Now it remains to 
show that a triangulation exists. The approach will be to show that if a triangulation exists into a 
number of triangles equal to the number of sides minus 2 for any polygon with 3, 4, 5, … n-1 sides, 
then it works for n sides as well, as then we can say that well clearly it works for triangles so it must 
work for four sided shapes, but it works for triangles and four sided shapes so it must work for five 
sided shapes, and so on until we have it for all numbers of sides. 

Now, suppose all polygons with fewer than n sides can be triangulated into the number of sides minus 
two triangles, and that we have a polygon with n sides. consider the leftmost vertex. Clearly, the angle 
at that vertex is less than 180 degrees, since otherwise it wouldn’t be the leftmost vertex! (Just think 
about it hard enough to see this). Then consider the two neighbouring vertices and try to draw a line 
between them. Possibly this line does not intersect part of the polygon, in which case we form a 
triangle and have successfully split it into a triangle and another polygon with n-1 sides which by our 
assumption about any polygon with fewer than n sides can be triangulated into n-3 triangles, so our 
original polygon can be triangulated into n-2 triangles, so done. Otherwise, we connect the two 
neighbouring vertices to the leftmost one and part of the polygon is inside the triangle formed. In 
which case, we pick the leftmost vertex inside this triangle (meaning no part of the polygon is in any 
point in the triangle to the left) and connect it to the leftmost vertex, noting that now this diagonal 
cannot be obstructed, so we have split the polygon. Suppose it has been split into one with x sides, 
then the other one has n+2-x sides (As the total number of sides of the two becomes n-2 as the 
diagonal which we used to cut used to contribute 0 sides and now contributes 2). By our assumption 
about polygons with fewer than n sides, we have that one part can be triangulated into x-2 triangles 
and the other part can be triangulated into n-x triangles, so the original polygon can be triangulated 
into n-2 triangles. So done. 

Area of a circle (GCSE) 



Image: Shows a circle cut into many slices and then below shows the 
slices rearranged to form a rectangle-looking shape of height r and width 𝜋𝑟. 

From this diagram it is clear that as we make the slices smaller the area of the figure on the bottom 
approaches a rectangle which will clearly have an area of 𝜋𝑟2. 

Factor theorem 

Given a polynomial f(x), x-a divides f(x) if and only if a is a root of f(x), ie f(a)=0 

First, notice the wording “if and only if”. This means that the statements are equivalent, which means 
one implies the other. Therefore, it is sufficient to show that   x-a dividing f(x) implies f(a)=0 and that 
f(a)=0 implies that x-a divides f(x) 

First, suppose x-a divides f(x). This means that there exists a polynomial g(x) such that f(x)=(x-a)g(x). 
Now evaluate f(a) by substituting a in place of x. This gives f(a)=(a-a)g(a). Since a-a=0, f(a)=0g(a)=0. 

Now suppose that f(a)=0. We know that if we went through the long division process, we would get 
that f(x)=(x-a)g(x)+R for some polynomial g(a) and some remainder R. Since this is true for all values of 
x, it is true when x=a, so f(a)=(a-a)g(a)+R, but we know that  (a-a)g(a)=0 since a-a=0 and that f(a)=0 by 
our assumption, so 0=0+R, therefore R=0. This means that f(x)=(x-a)g(x) so x-a divides f(x).~ 

Remainder theorem 

If f(x) is a polynomial, and you do long division of f(x) by x-a then get f(x)=(x-a)g(x)+R for some 
polynomial g(x) so that R is the remainder, then R=f(a). More generally, if you divide f(x) by bx-a then the 

remainder is f(𝑎
𝑏

). 

Proof: First, note that f(x)=(x-a)g(x)+R is true for all values of x, so substituting x=a gives f(a)=(a-
a)g(a)+R. Since (a-a)g(a)=0 since a-a=0, f(a)=R. 

If we divide f(x) by bx-a we will get f(x)=(bx-a)g(x)+R for some polynomial g. Let x=𝑎

𝑏
 since this is true for 

all x, then we get f(𝑎
𝑏

) = (b(𝑎
𝑏
)-a)g(𝑎

𝑏
)+R = (a-a)g(𝑎

𝑏
)+R (since the b’s cancel in the b(𝑎

𝑏
) term) = R, since 

again, (a-a) times anything is always 0. 

Equating coefficients 

We can do this because if two polynomials with different coefficients were the same, their difference 
would be a polynomial with non-zero coefficients, which is clearly never 0, since if the 𝑥𝑘  term were 
its smallest non-zero term, the kth derivative of the polynomial would be non-zero at x=0, 
contradicting the fact that the polynomial is zero. This holds for infinite polynomials too once we have 



the justification of differentiating those term by term (needed for generalized binomial theroem proof, 
added as an appendix). 

Product rule 

              
𝑑

𝑑𝑥
𝑓(𝑥)𝑔(𝑥) 

This proof contains 
an image with a visual proof of the product rule. 

In the geometric illustration above u is shorthand for f(x) and v is shorthand for g(x). 

Chain rule 

𝑑𝑔(𝑓(𝑥))

𝑑𝑥
= lim

ℎ→0

𝑔(𝑓(𝑥+ℎ))−𝑔(𝑓(𝑥))

ℎ
= lim

ℎ→0

𝑔(𝑓(𝑥+ℎ))−𝑔(𝑓(𝑥))

𝑓(𝑥+ℎ)−𝑓(𝑥)

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 = g’(f(x))f’(x) 

But this is actually not a proof because 𝑓(𝑥 + ℎ) − 𝑓(𝑥) could be 0. 

So, we define a function d(y) to be 𝑔
(𝑦)−𝑔(𝑓(𝑥))

𝑦−𝑓(𝑥)
 if y does not equal f(x) and d(y)=g’(f(x)) if y=f(x). This 

function is continuous at y=f(x) since as y approaches f(x) 𝑔
(𝑦)−𝑔(𝑓(𝑥))

𝑦−𝑓(𝑥)
 approaches g’(f(x)) by definition. 

If g(f(x+h)) does not equal g(f(x)) then we have that 𝑔
(𝑓(𝑥+ℎ))−𝑔(𝑓(𝑥))

ℎ
=

𝑔(𝑓(𝑥+ℎ))−𝑔(𝑓(𝑥))

𝑓(𝑥+ℎ)−𝑓(𝑥)

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 which 

is the same as saying 𝑔
(𝑓(𝑥+ℎ))−𝑔(𝑓(𝑥))

ℎ
= 𝑑(𝑓(𝑥 + ℎ))

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
. Otherwise, we still have that 

𝑔(𝑓(𝑥+ℎ))−𝑔(𝑓(𝑥))

ℎ
= 𝑑(𝑓(𝑥 + ℎ))

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
, since f(x+h)=f(x) so we are just saying that 0=0. Therefore, 

the correct proof is 𝑑𝑔(𝑓(𝑥))

𝑑𝑥
= lim

ℎ→0
𝑑(𝑓(𝑥 + ℎ))

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
. But since d(f(x+h)) approaches g’(f(x)) as h 

goes to 0 by continuity of d, and 𝑓
(𝑥+ℎ)−𝑓(𝑥)

ℎ
 approaches f’(x) by definition, the result follows. 

Quotient rule 

This follows from the product and chain rules. 

𝑑

𝑑𝑥

𝑓(𝑥)

𝑔(𝑥)
 = 𝑑

𝑑𝑥
(𝑓(𝑥) ∗

1

𝑔(𝑥)
) = 𝑓′(𝑥) ∗

1

𝑔(𝑥)
+ 𝑓(𝑥) ∗  

𝑑

𝑑𝑥
(

1

𝑔(𝑥)
) 

Where I have used the product rule to get the second equality. 

We can use the chain rule to find 𝑑

𝑑𝑥
(

1

𝑔(𝑥)
). The chain rule says that for any 2 functions g(x), h(x), the 

derivative of h(g(x)) with respect to x is given by g’(x)h’(g(x)). In this case, if h(x) is the function 1
𝑥

 then 
1

𝑔(𝑥)
=h(g(x)). Now h’(x) = 𝑑

𝑑𝑥
(
1

𝑥
) = 

−1

𝑥2  by the rule above so 

h’(g(x)) = −1

𝑔(𝑥)2
. This means that 𝑑

𝑑𝑥
(

1

𝑔(𝑥)
) = 𝑔′(𝑥) ∗

−1

𝑔(𝑥)2
. 



Now finally, 𝑑

𝑑𝑥

𝑓(𝑥)

𝑔(𝑥)
 =𝑓′(𝑥) ∗

1

𝑔(𝑥)
+ 𝑓(𝑥) ∗  𝑔′(𝑥) ∗

−1

𝑔(𝑥)2
 = 𝑔

(𝑥)𝑓′(𝑥)−𝑓(𝑥)𝑔′(𝑥)

𝑔(𝑥)2
. 

A clarification on integrals 

We are given that if F(x) is an antiderivative of f(x) then ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is equal to F(b)-F(a). We will discuss 

more about how the integral is actually defined in a second appendix at the end of this level since 
some theory from Appendix I will be needed, but we know this is equal to the area we want by the 
fundamental theorem of calculus. However, first we need to show that F(b)-F(a) is well defined, since 
F(x) is not the antiderivative of f, rather an antiderivative. The family of antiderivatives of f(x) is given by 
F(x)+c. But, notice that in (F(b)+c)-(F(a)+c) the c’s cancel, so as long as we evaluate the difference 
between an antiderivative when evaluated at b and a, we will get the same value regardless of which 
antiderivative we use. 

Fundamental theorem of calculus 

Image to show 
why FTC holds intuitively. 

Note: A(x) is the area from a starting point, it doesn’t matter which starting point we pick, but it should 
not be negative infinity like my A level textbook does, since otherwise A(x) would not always be well 
defined! 

Now one alternative way of stating the fundamental theorem of calculus is to say that f(x) is the 

derivative of ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 which is equal to F(x)-F(a) where F(x) is an antiderivative of f(x). Since F(a) is a 

constant, we have that the derivative of F(x)-F(a) equals f(x). 

Existence and uniqueness of e 

Specifically, to prove that a number e with the property that the derivative of 𝑒𝑥  equals 𝑒𝑥 and that e is 
the unique non-zero real number with this property. We work in the reals for now since for complex 
numbers exponentiation is more complicated 

Let’s try to find the derivative of 𝑐𝑥 for some arbitrary c real and > 1. 

lim
ℎ→0

𝑐𝑥+ℎ−𝑐𝑥

ℎ
 = 𝑐𝑥lim

      ℎ→0

𝑐ℎ−1

ℎ
 

For now, we assume the limit exists. It is not 0 since 𝑐𝑥is not constant but its derivative would be 0 if 

     lim
      ℎ→0

𝑐ℎ−1

ℎ
 were 0. Let’s call this limit z. Then the derivative of 𝑐𝑥 is z𝑐𝑥. Consider (𝑐

1

𝑧)𝑥 which equals 𝑐
𝑥

𝑧  



by laws of powers. The derivative of this, by the chain rule is (𝑥

𝑧
)′(𝑧𝑐

𝑥

𝑧) =  (
1

𝑧
)(𝑧𝑐

𝑥

𝑧) =  𝑐
𝑥

𝑧. Therefore 𝑐
1

𝑧 is 

a number with the property that e has, ie  the derivative of (𝑐
1

𝑧)𝑥 is (𝑐
1

𝑧)𝑥. 

Now suppose f also has the property that e has. Then 𝑑

𝑑𝑥
𝑓𝑥 =

𝑑

𝑑𝑥
(𝑒ln(𝑓))

𝑥
=

𝑑

𝑑𝑥
𝑒xln(𝑓) 

= 𝑒xln(𝑓) 𝑑

𝑑𝑥
𝑥𝑙𝑛(𝑓) =𝑒xln(𝑓)𝑙𝑛(𝑓) = 𝑓𝑥ln (𝑓). 

We see that by our assumption that f has the property that e has that 𝑓𝑥 equals its own derivative, we 
must have ln(f)=1, therefore f=e, so e is unique. 

For those of you who want to be particularly rigorous, to show that this limit exists, we will first note 

that if h is positive then lim
      ℎ→0

𝑐ℎ−1

ℎ
 is always positive since the numerator and denominator are both 

positive as 𝑐ℎ>𝑐0=1 is implied by h>0 and the fact that clearly 𝑐ℎincreases as h increases. We will 

show that 𝑐
ℎ−1

ℎ
 is increasing over the rational numbers. A function that is increasing over the rationals 

and continuous (which this clearly is) intuitively (and provably) can’t possibly be not increasing over 
the reals since the rationals are dense (ie there are rationals arbitrarily close/as close as we want to 
any number), and a function that is increasing and has positive outputs for positive inputs cannot 

possibly not have a limit as its input goes to 0 from the right, since the set of values 𝑐
ℎ−1

ℎ
 for positive h 

is bounded below by 0, then the fact that it has a highest lower bound is an axiom which is essentially 
a reverse of the least upper bound property. 

Now what we need to actually show is that 𝑐
𝑎−1

𝑎
 > 

𝑐𝑏−1

𝑏
 if a and b are rational with a>b. Suppose k is a 

common denominator of a and b so a=n/k and b=m/k for some integers m and n. Let x=1/k so a=nx 

and b=mx. Then we have to prove 𝑐
𝑛𝑥−1

𝑛𝑥
 < 𝑐

𝑚𝑥−1

𝑚𝑥
. We can expand these as follows: 

𝑐𝑛𝑥 − 1

𝑛𝑥
=  

𝑐𝑥 − 1

𝑥
∗
1 + 𝑐𝑥 + ⋯𝑐𝑥(𝑛−1)

𝑛
 

𝑐𝑚𝑥 − 1

𝑚𝑥
=  

𝑐𝑥 − 1

𝑥
∗
1 + 𝑐𝑥 + ⋯𝑐𝑥(𝑚−1)

𝑚
 

 

and it is easy to check that the product of the numerators and denominators match the numerator 
and denominator of the original expression. We see that the second expression is larger since both 

are the same constant 𝑐
𝑥−1

𝑥
 multiplied by something. In the first expression, this something is the 

mean of 1, 𝑐𝑥, … 𝑐𝑥(𝑛−1) and the second one is the mean of those terms with some terms that are 
strictly larger than them, ie 𝑐𝑥𝑛, … 𝑐𝑥(𝑚−1), so it is larger than the first mean, completing the proof of 
existence of the limit. 

Power rule (general case) 

The derivative of 𝑥𝑎with respect to x is given by 𝑎𝑥𝑎−1for all a, provided a is a constant, so please do 

not use this to try to find something like 𝑑

𝑑𝑥
(𝑥𝑥) 

𝑑

𝑑𝑥
(𝑥𝑎) = 𝑑

𝑑𝑥
((𝑒ln (𝑥))𝑎) =

𝑑

𝑑𝑥
(𝑒a∗ln (𝑥)) 



By the chain rule, we have that the above expression is equal to 

(𝑒a∗ln(𝑥))
𝑑

𝑑𝑥
(𝑎 ∗ ln (𝑥)) 

To see this, recall that the chain rule says that for any 2 functions g(x), h(x), the derivative of h(g(x)) with 
respect to x is given by g’(x)h’(g(x)). Let h(x)=𝑒𝑥 and g(x)=a*ln(x) and the expression above follows. Here 

we use the fact that a is a constant to find that 𝑑

𝑑𝑥
(𝑎 ∗ ln (𝑥)) = 𝑎

𝑥
 

Therefore, 

𝑑

𝑑𝑥
(𝑥𝑎) = (𝑒a∗ln(𝑥)) ∗

𝑎

𝑥
 = (𝑒ln(𝑥))

𝑎
∗

𝑎

𝑥
= 𝑥𝑎 ∗

𝑎

𝑥
= 𝑎𝑥𝑎−1 

Log derivative or 1/x antiderivative 

One may try to integrate 1/x using the power rule. Here is why that goes wrong. 

∫
1

𝑥
𝑑𝑥 = ∫𝑥−1𝑑𝑥 = 𝑥

0

0
+ 𝑐 

Division by zero. The way I will approach this is by trying to differentiate ln(x) and showing that the 
derivative is equal to 1/x. Suppose 𝑦 = ln(𝑥), then 

𝑒𝑦 = 𝑥 

𝑒𝑦 =
𝑑𝑥

𝑑𝑦
 

𝑥 =
𝑑𝑥

𝑑𝑦
 

1

𝑥
=

𝑑𝑦

𝑑𝑥
 

Note: 𝑑𝑥

𝑑𝑦

𝑑𝑦

𝑑𝑥
= 1 by the chain rule. 

The proper way to do arcsin derivative 

Here we assume x is real and |𝑥| ≤ 1, as that is the domain that arcsin is typically defined. 

𝑦 = arcsin (𝑥) 

sin (𝑦) = 𝑥 

Although sin(y)=x is implied by y=arcsin(x), the converse is not true, as discussed 

cos (𝑦) =
𝑑𝑥

𝑑𝑦
 

Here, many people assert that cos(𝑦) = √𝑐𝑜𝑠2(𝑦) = √1 − 𝑠𝑖𝑛2(𝑦), however the assertion cos(𝑦) =

√𝑐𝑜𝑠2(𝑦) is only true if cos(y) is positive. Luckily it is, since the range of arcsin is by definition − 𝜋

2
 to 𝜋

2
 

where cos is always positive, but usually this step is not done properly. The result for the derivative of 
arcsin follows, and the derivative of arccos can be derived in the same way, noting that sin is positive 
and -sin is negative in the range of arccos. 

Integration as the limit of a sum – Justification that the limit actually exists. 



What I will do is consider ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, which I will now assume is ∫ 𝑓(𝑥)𝑑𝑥

1

0
 since I can shift and scale 

everything as needed. The integral is lim
𝑛→∞

∑
1

𝑛

𝑛−1
𝑟=0 𝑓(

𝑟

𝑛
). The image below shows what this sum looks like 

graphically in the case n=10 and f is cosine. It may seem obvious that this limit exists, but that is 
because what I have shown is a relatively simple function. I will prove that this works for all 
continuous functions, but this is not obvious: What if the function was something like a fractal curve? 

 

So, what I will do is consider the sums made by making the rectangles i) just tall enough that they 
always overestimate the function (as in the image above) or ii) just short enough that they 
underestimate the function, and show that these areas in fact get arbitrarily close together if I make n 
large enough. In particular, for any ε, no matter how small, they will be within ε. I’ll call these upper 
and lower sums 𝑈𝑛 and 𝐷𝑛. We will need a lemma to do this, if you go to the level 6 technical results 
document and scroll pass some scary stuff you can find the proof that every sequence that is 
bounded has a convergent subsequence, which we will use. The proof only uses the fact that an 
increasing sequence or decreasing sequence that is bounded converges, which we will explain later in 
this level anyway. 

Now we use the fact that the function is continuous. The formal definition of continuity, and hopefully 
you can see that this is the same as the “you can draw it without taking your pen off the paper” 
intuition, is the idea that the function is arbitrarily close to its value at some input x, provided the input 
is sufficiently close to x. It is also the case (and this is intuitively obvious) that if a sequence 
converges, ie 𝑥𝑛 → 𝑥, then 𝑓(𝑥𝑛) → 𝑓(𝑥) if f is continuous. This is because 𝑥𝑛 can be made arbitrarily 
close to 𝑥 by convergence, and by continuity that means we can make 𝑥𝑛 close enough to 𝑥 that by 
making n large enough we can make 𝑓(𝑥𝑛) as close as we want to 𝑓(𝑥) so 𝑓(𝑥𝑛) → 𝑓(𝑥). This is where 
I can do epsilon-delta stuff with words to make you see what’s really going on! 

Now suppose there exists an ε such that 𝑈𝑛 − 𝐷𝑛 > ε for infinitely many n, which is the opposite of 
saying that eventually it is always less than ε. Pick such an n. Then there must exist an interval for 

some k<n such that from 𝑘
𝑛

 to 𝑘+1

𝑛
, the function has a range of at least ε. If this were not the case, every 

rectangles height would differ by less than ε between the upper and lower versions, and therefore the 
area of the whole figure would not differ by more than ε since we are assuming its width is 1. 

Remember, we are supposing 𝑈𝑛 − 𝐷𝑛 > ε. So for some 𝑥𝑛 and 𝑦𝑛 between 𝑘
𝑛

 and 𝑘+1

𝑛
, we have         

|𝑥𝑛 − 𝑦𝑛| <
1

𝑛
 trivially and |𝑥𝑛 − 𝑦𝑛| > ε. Now for all n, pick such an 𝑥𝑛. This has a convergent 



subsequence by our lemma, so suppose that is 𝑥𝑛𝑘
, which converges to a limit L. Then                 

|𝑥𝑛𝑘
− 𝑦𝑛𝑘

| <
1

𝑛𝑘
 from earlier, meaning 𝑦𝑛𝑘

 gets arbitrarily close to 𝑥𝑛𝑘
 and thus also converges to L. 

Therefore, by continuity, 𝑓(𝑥𝑛𝑘
) → 𝑓(𝐿) and 𝑓(𝑦𝑛𝑘

) → 𝑓(𝐿), but we assumed at the beginning that 

𝑓(𝑥𝑛𝑘
) and 𝑓(𝑦𝑛𝑘

) were always apart by at least ε, so they cannot converge to the same limit and this 
is a contradiction. 

Note that it is easy to see from this definition of the integral that indeed the fundamental theorem of 
calculus is true whenever our derivative that we want to integrate is continuous or at least made up of 
continuous function parts. We will not prove it in this level for more general cases than that since 
those are never needed at A level. 

Separation of variables 

Suppose we know that 𝑑𝑦

𝑑𝑥
=

𝑓(𝑥)

𝑔(𝑦)
, we want to justify that ∫ 𝑓(𝑥)𝑑𝑥 =∫𝑔(𝑦)𝑑𝑦 beyond notational tricks. 

I’m not sure how rigorous this is but I’m sure it’s good enough. Note that here y is a function of x. 

lim
ℎ→0

𝑦(𝑥+ℎ)−𝑦(𝑥)

ℎ
=

𝑓(𝑥)

𝑔(𝑦)
 by the definition of 𝑑𝑦

𝑑𝑥
. We have that 

𝑓(𝑥) = 𝑔(𝑦)
𝑑𝑦

𝑑𝑥
 

∫𝑓(𝑥)𝑑𝑥 = ∫𝑔(𝑦)
𝑑𝑦

𝑑𝑥
𝑑𝑥 

Taking an antiderivative of both sides is allowed as since you add the +c when you find the 
antiderivative so it’s just saying that two equivalent functions have the same family of antiderivatives.  

The justification is: Consider ∫𝑔(𝑦)𝑑𝑦. This is just G(y)+c, where G is an antiderivative of g. Now the 

derivative of G(y) with respect to x is 𝑔(𝑦)
𝑑𝑦

𝑑𝑥
 by the chain rule and thus ∫𝑔(𝑦)

𝑑𝑦

𝑑𝑥
𝑑𝑥 is also G(y)+c. 

So we have that ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ 𝑔(𝑦)𝑑𝑦

𝑦(𝑏)

𝑦(𝑎)
 for arbitrary a and b. If, say, a=0 then 

 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

0
= ∫ 𝑔(𝑦)𝑑𝑦

𝑦(𝑏)

𝑦(0)
 so G(y(b))-G(0)=F(b)-F(0) where G and F are antiderivatives of g and f 

respectively. We then see that G(y(b)) differs by F(b) by a constant which depends only on which 
particular solution we consider, which is good enough. 

Binomial expansion (positive integers) 

We first motivate the definition of (𝑛
𝑟
). What is the number of ways to pick r things from n things? Well, 

we have n choices for the first thing, n-1 for the second, n-2 for the third, and so on. But, we could pick 
the same things in a different order, so to take account of that we need to divide by the number of 
orderings of r things, ie the number of ways we could list those same r things, which is r! (r factorial). 
This is because I have r choices for the first thing in the list, r-1 choices for the second since I can’t use 
the one that was first in the list, r-2 for the third, etc. 

Now it should make sense why these are the binomial coefficients – if I have say (1+x)(1+x)(1+x)…(1+x) 
with n (1+x)’s then the value of this is equal to the sum of products of one term per bracket, and the 
𝑥𝑟coefficient is the number of such products that contain exactly r x’s is (𝑛

𝑟
) 



We also have this identity which proves the additive property of the entries of pascals triangle if they 
were to be defined by these binomial coefficients. 

  

An intuition for this is also, if I am picking k things from n, the number of ways is the sum of the 
number of ways to do it without picking the first thing, and the number of ways to do it with picking the 
first thing. 

Geometric series valid interval 

Before reading on, try using your calculator to calculate the sum of the first few terms of a geometric 
series with common ratio (i) 0.5 and (ii) 1.5. See how the values change as you add more terms. Can 
you figure out why we need that for the infinite sum the common ratio has to be between -1 and 1? 

The partial sums of a geometric series are given as follows, where the first term is a and the common 
ratio is r and the sum of the first k terms is 

𝑎(1 − 𝑟𝑘)

1 − 𝑟
 

Now note that as k goes to infinity, if |r|<1 then 𝑟𝑘
→0 so the expression above actually approaches 𝑎

1−𝑟
 

and conversely if it is not the case that |r|<1 then the expression above will blow up to infinity as k 
increases and not approach a limit. If you’re not sure why, consider what happens if you repeatedly 
multiply by (i) something less than 1 and (ii) something more than 1, and (iii) the fact that if it’s 
something negative you just have an alternating sign and who cares about that. 

Integration by substitution 

We prove the assertion below which essentially says that integration by substitution works as you 
expect. 

∫ 𝑓(𝑢(𝑥))
𝑑𝑢

𝑑𝑥
𝑑𝑥 = ∫ 𝑓(𝑢(𝑥))𝑑𝑢 = 

𝑢(𝑏)

𝑥=𝑢(𝑎)

𝑢(𝑏)

𝑥=𝑢(𝑎)

∫ 𝑓(𝑢(𝑥))𝑑𝑢 

𝑢=𝑏

𝑢=𝑎

 

The justification is the same as what I did for the differential equations, where the steps here are 
justified the same way as certain steps in that picture of the paper I took because I was too lazy to 
type it out at 3 in the morning. (Hint: u here is like y there, f here is like g there). 

Integration by parts 

Product rule for differentiation says (u(x)v(x))’=u(x)v’(x)+u’(x)v(x) for functions u and v. 

Now integrate both sides, or I like to call it finding the family of antiderivatives of both sides, giving 



𝑢(𝑥)𝑣(𝑥) + 𝑐 = ∫𝑢(𝑥)𝑣′(𝑥)𝑑𝑥 + ∫𝑣(𝑥)𝑢′(𝑥)𝑑𝑥 

Rearranging gives the integration by parts formula. 

Volumes of revolution 

Here you can see from the lazy quick sketch diagram below that the volume of revolution will 
approach as the width of these cylinders gets small the sum of the volumes of the cylinders which are 
each equal to 𝜋𝑦2𝑑𝑥 and using the idea of integration as a sum from the separation of variables 
section we see that summing these volumes and taking a limit as dx → 0 is the same as the integral 
typically used which is ∫𝜋𝑦2𝑑𝑥. 

Image: Bad diagram of concentric thin 
cylinders to illustrate why the formula works. 

Volume of cone (GCSE but proven using A level stuff) 

Intuitively, the volume should scale with the height times the square of the radius. The volume of a 
cone with radius r and height h is equal to the volume bounded by the line segment connecting (0, r) to 
(h, 0) after rotating it 2π radians about the x axis, as that volume is literally the cone on its side. The 

equation for this line segment is 𝑦 = 𝑟 − (
𝑟

ℎ
) 𝑥. We thus need to evaluate ∫ 𝜋 (𝑟 − (

𝑟

ℎ
) 𝑥)

2

𝑑𝑥.
ℎ

0
 

= 𝜋 ∫ 𝑟2 − 2𝑟 (
𝑟

ℎ
) 𝑥 + (

𝑟

ℎ
)
2

𝑥2𝑑𝑥.
ℎ

0

 

= 𝜋𝑟2 ∫ 1 − (
2

ℎ
) 𝑥 + (

1

ℎ2
) 𝑥2𝑑𝑥.

ℎ

0

 

= 𝜋𝑟2 [ℎ − (
2

ℎ
) (

1

2
ℎ2) + (

1

ℎ2
) (

1

3
ℎ3)] − [0 − (

2

ℎ
) 0 + (

1

ℎ2
) 0] 

=
1

3
𝜋𝑟2ℎ 

Volume of sphere (GCSE but proven using A level stuff) 

Intuitively, the volume should scale with the cube of the radius. We find the volume of a semicircle 
rotated 2π radians about the x axis, which is a sphere. A semicircle with radius r is given by 𝑦 =

√𝑟2 − 𝑥2 (Note: This is a semicircle and not a circle because square root is defined as just the positive 



square root). We then find the volume of the sphere using the volumes of revolution trick which gives 
the volume of a sphere with radius r as follows 

𝜋 ∫ (
𝑟

−𝑟

𝑟2 − 𝑥2)𝑑𝑥 

= 𝜋 [[𝑟2(𝑟) −
𝑟3

3
] − [𝑟2(−𝑟) −

(−𝑟)3

3
]] 

= 𝜋𝑟3 [[1 −
1

3
] − [−1 −

(−1)3

3
]] 

=
4

3
𝜋𝑟3 

Surface area of sphere (GCSE but proven using A level stuff) 

Intuitively the surface area should depend on 𝑟2. As r changes what is the rate at which the volume of 

a sphere changes, ie what is 𝑑𝑉

𝑑𝑟
? Visualise this scenario in your head and realize that the rate of 

change of volume at any instant should be the surface area, as the corresponding change in volume 
when we change the radius by dr is, informally, like a thingy which thickness dr, area of the surface 

area, and volume dV. We find that  𝑑𝑉

𝑑𝑟
 is  4𝜋𝑟2using the power rule for differentiation. 

Curved surface area of cone (GCSE but proven using A level stuff) 

Imagine taking the surface of a cone and cutting it as shown in the image below 

 

Then the distance from the point at the top (the center of the resulting circular arc) to A and B is l, so l 
is the radius of the resulting circle. The circumference of the circle at the bottom of the cone is 2𝜋𝑟 
and hence 2𝜋𝑟 is the curved arc length of the resulting circular arc. Therefore, the angle in radians 

traced out by the resulting circular arc is 2𝜋𝑟

𝑙
. Hence, by the formula for the area of a sector, we just 

need 1
2
𝜋𝑙2

2𝜋𝑟

𝑙
= 𝜋𝑟𝑙. 

Iterative formulas/Numerical methods 

I have a video on this, where I demonstrate that under certain conditions with the function and its 
derivatives, iterative formulas and newton raphson work. 

Trigonometry addition formulae 

So basically what you need to know is that i is an imaginary number defined by 𝑖 = √−1, and we often 
draw numbers of the form 𝑎 + 𝑏𝑖 as the point (a,b) in a 2D grid (an argand diagram). Now we consider 
a very important geometric intuition about multiplying complex numbers. Some textbooks give a 



geometric proof, but this proof justifies it for all angles, not just angles between 0 and 90 degrees, and 
is much more beautiful. 

In order to understand this, you should either try to visualize or draw this until it makes sense to you. 
3blue1brown’s lockdown math explains all these concepts beautifully, but I cannot guarantee that 
those will exist since I am not affiliated with 3blue1brown nor youtube. 

When you multiply 2 complex numbers a*b, what you can think of is that you stretch and rotate the 
entire argand diagram such that the number 1 lines up with the number a, then go to the number b on 
that new argand diagram. Note that i(a+bi)=ai-b by algebra. Draw a+bi and ai-b on an argand diagram 
and try to convince yourself that they are always perpendicular. Now the reason my trick from earlier 
works is becauseif you have a(x+yi) this is ax+ayi. Because moving on path 1 then path 2 on an argand 
diagram is the same as adding the numbers given by path 1 and path 2, we have that if you move |a|x 
units in the direction parallel to a then |a|y units in the direction perpendicular to a. It should hopefully 
be clear that this gets you to a(x+yi) in the normal grid and x+yi in the grid stretched and rotated 
(specifically, stretched by a factor of |a| and rotated by arg(a) radians). 

Now consider the function cos(x)+isin(x) with x real. This is the function you get from walking x radians 
around the unit circle anticlockwise, since on an argand diagram if I have the function you get from 
walking x radians around the unit circle then indeed you can see that cos(x) will be the real part and 
sin(x) will be the imaginary part. You can draw a diagram to convince yourself of this. 

Now consider (cos(x)+isin(x))(cos(y)+isin(y)) with x,y real. Using the multiplication trick from earlier, 
what you should do is rotate the argand diagram x radians so that the point 1 on your rotated grid 
corresponds to the point cos(x)+isin(x) on your original argand diagram. Then you can see that the 
point cos(y)+isin(y) on your rotated diagram is gotten to by walking form the original point 1 x radians 
anticlockwise then y radians anticlockwise, so you walk x+y radians anticlockwise. This is significant 
because you then end up at the point cos(x+y)+isin(x+y), which intuitively establishes the following 
identity: 

(cos(x)+isin(x))(cos(y)+isin(y)) = cos(x+y)+isin(x+y) 

Notice how this behavior is similar to exponentials. We will expand on this idea in the exponentials 
and logarithms video. 

Now expand the left hand side, noting that 𝑖2 = −1 by definition, then we have 

cos(x)cos(y)-sin(x)sin(y)+i(cos(x)sin(y)+sin(x)cos(y)=cos(x+y)+sin(x+y) 

Equating the real and imaginary parts to eachother gives the desired result. 

Below is an illustration for both the multiplication idea with the example (3+4i)(2+i) and in the case of 
multiplying on the unit circle. (Grids not accurately drawn) 



Image: Shows rotated and stretched 
grids on an argand diagram to visually show my point, with unit circles and stuff included in the 
diagrams. 

As an extra challenge for capable/interested people, can you use these ideas to find that 1
2
√2(1 ± 𝑖) 

are two square roots of i and that two other cube roots of 1 that are not just 1 are given by − 1

2
±

1

2
√3𝑖 

without directly computing the squares or cubes but rather using the ideas above and known sines 
and cosines of certain angles? This is just an exercise and these ideas will be covered later level 5 and 
are covered in the previously mentioned lockdown math youtube videos anyway. 

Sine and cosine derivatives 

You can use the addition rules proved above in the definition of the derivative, but then you have to 
prove the following results to get the full result 

lim
ℎ→0

sin (ℎ)

ℎ
= 1 and lim

ℎ→0

cos(ℎ)−1

ℎ
= 0 

Below is an illustration/geometric intuition for both of these results, with some algebra used. 

Image: Geometric proof of these limits. 

Note that these last few proofs may be longer and harder to follow than the previous ones. For partial 
fractions, you may be satisfied with just knowing that you can always check by hand that your partial 
fractions indeed equal the original fraction, but I will prove why it’s done the way it’s done. 



Dot product equivalence between algebraic and geometric definition 

I will give two proofs of this, because although one proof would be sufficient, I think they’re both pretty 
cool. 

If we start from the geometric definition, then from this picture, you can see that the length of a vector 
a when projected onto the line in the direction of another vector b has length |a|cos(AOB). 

 

Now hopefully you can see that if I add a vector c to a vector a, then the amount that the length of its 
projection in the direction of b will change by will be equal to the length of the projection of c onto b 
(which will be negative if c is facing away from b). 

So hopefully you can see visually that |a|cos(AOB)+|c|cos(COB)=|a+c|cos((A+C)OB). Multiplying both 
sides by |b| and then substituting in the dot proudct definition gives the important identity 
a.b+c.b=(a+c).b. 

Now, observe that the basis vectors i.i, j.j, k.k are all equal to 1 because, eg i.i=|i||i|cos(0)=1. However, 
i.j, i.k and k.j are all equal to 0 because, eg, i is perpendicular to j so the cosine of the angle between 
them is 0. 

Now, lets say for example that v and u are 3 dimensional vectors and we want to compute v.u. We can 
write both v and u as ai+bj+ck and di+ej+fk respectively for some numbers a, b, c, d, e, f. 

Then v.u 

=(ai+bj+ck).(di+eg+fk) 

=(ai).(di+ej+fk)+(bj).(di+ej+fk)+(ck).(di+ej+fk) where we have used the fact that we can split the dot 
product up like this as we just demonstrated, 

=ai.di+ai.ej+ai.fk+bj.di+bj.ej+bj.fk+ck.di+ck.ej+ck.fk 

=ad(i.i)+ae(i.j)+af(i.k)+bd(j.i)+be(j.j)+bf(j.k)+cd(k.i)+ce(k.j)+cf(k.k). Using the fact that i.i, j.j, k.k=1 and 
everything else is 0, we get 

=ad+be+cf, so we can indeed sum component-wise. 

Note that we can move numbers outside of dot products like this: av.bu if v and u are vectors and a 
and b are numbers is equal to |av||bu|cos([aV]O[bU])=|ab||v||u|cos([aV]O[bU]). Note that [aV]O[bU] is 
equal to VOU if a and b are positive since we’re just shrinking av and bu. If a and b are both negative 
we are flipping everything around. In either of these cases we also have that |ab|=ab since a and b 
have the same sign, so av.bu=ab|v||u|cos(VOU)=ab(v.u). If a and b have opposite signs then we are 
flipping one of av and bu to the other side, so the cosine of the angle changes sign, but also |ab|=-ab in 
this case so the minuses cancel out and we still have that av.bu=ab(v.u). 



The second proof starts by assuming that we can in fact get the dot product by summing component-
wise, then derives a.b=|a||b|cos(AOB). So, a.a is the sum of the squares of the components of a, which 
by pythagoras is in fact equal to the square of the length of a. But if we have a triangle ABC, then by the 

cosine rule we know that |𝐵𝐶⃗⃗⃗⃗  ⃗|
2
= |𝐴𝐶⃗⃗⃗⃗  ⃗|

2

+ |𝐴𝐵⃗⃗⃗⃗  ⃗|
2
− 2|𝐴𝐶⃗⃗⃗⃗  ⃗||𝐴𝐵⃗⃗⃗⃗  ⃗|cos(𝐵𝐴𝐶). Now we can do some algebra 

on this: 

|𝐴𝐶⃗⃗⃗⃗  ⃗|
2
+ |𝐴𝐵⃗⃗⃗⃗  ⃗|

2
− 2|𝐴𝐶⃗⃗⃗⃗  ⃗||𝐴𝐵⃗⃗⃗⃗  ⃗|cos(𝐵𝐴𝐶) = 𝐴𝐶⃗⃗⃗⃗  ⃗. 𝐴𝐶⃗⃗⃗⃗  ⃗ + 𝐴𝐵.⃗⃗ ⃗⃗ ⃗⃗  𝐴𝐵⃗⃗⃗⃗  ⃗ − 2|𝐴𝐶⃗⃗⃗⃗  ⃗||𝐴𝐵⃗⃗⃗⃗  ⃗|cos(𝐵𝐴𝐶) 

But this is also equal to 

|𝐵𝐶⃗⃗⃗⃗  ⃗|
2
= |𝐴𝐶 − 𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |

2
= 𝐴𝐶 − 𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 𝐴𝐶 − 𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐴𝐶⃗⃗⃗⃗  ⃗. 𝐴𝐶⃗⃗⃗⃗  ⃗ + 𝐴𝐵.⃗⃗ ⃗⃗ ⃗⃗  𝐴𝐵⃗⃗⃗⃗  ⃗ − 2𝐴𝐶⃗⃗⃗⃗  ⃗. 𝐴𝐵⃗⃗⃗⃗  ⃗ 

Therefore everything in the two lines above is equal to eachother, so 

𝐴𝐶⃗⃗⃗⃗  ⃗. 𝐴𝐶⃗⃗⃗⃗  ⃗ + 𝐴𝐵.⃗⃗ ⃗⃗ ⃗⃗  𝐴𝐵⃗⃗⃗⃗  ⃗ − 2|𝐴𝐶⃗⃗⃗⃗  ⃗||𝐴𝐵⃗⃗⃗⃗  ⃗|cos(𝐵𝐴𝐶) = 𝐴𝐶⃗⃗⃗⃗  ⃗. 𝐴𝐶⃗⃗⃗⃗  ⃗ + 𝐴𝐵.⃗⃗ ⃗⃗ ⃗⃗  𝐴𝐵⃗⃗⃗⃗  ⃗ − 2𝐴𝐶⃗⃗⃗⃗  ⃗. 𝐴𝐵⃗⃗⃗⃗  ⃗ 

And then cancelling stuff gives that in fact 

𝐴𝐶⃗⃗⃗⃗  ⃗. 𝐴𝐵⃗⃗⃗⃗  ⃗ = |𝐴𝐶⃗⃗⃗⃗  ⃗||𝐴𝐵⃗⃗⃗⃗  ⃗|cos(𝐵𝐴𝐶) 

And since A, B, C could be anything, this therefore must hold for all vectors. So done. 

Generalized binomial theorem 

The generalized binomial theorem is a special case of a concept called a Taylor series. A Taylor series 
is essentially when we have a function and we use the following method to try to fit an infinite 
polynomial to the function f(x): Let the constant term of the polynomial be f(0) so the functions and 
our polynomial at least match in terms of their value at x=0. Now we let the coefficient of x in our 
polynomial be f’(0) so our polynomial and its slope at x=0 match that of the original function, so if we 
zoom into the graph enough that f looks like roughly a straight line (since we are assuming f is 
“smooth” using the intuitive informal definition) our polynomial will be a decent approximation for f. 

Now we let the term in 𝑥2 of our polynomial be 1
2
𝑓′′(0) so that the second derivatives at x=0 match. 

We keep doing this until we get an infinite polynomial, and the hope is that this polynomial well 
approximates the original function as we add more terms, and that in the limit the infinite polynomial 
we get equals the original function. The infinite polynomial we get is called the Taylor series of the 
function. This is true in a lot of cases, and we prove it for the binomial theorem (1 + 𝑥)𝑛 as that is used 
at A level, as the binomial expansion is actually the Taylor series of (1 + 𝑥)𝑛 for general n. 

However, we do not always need to have the series centered at x=0. The general form of a taylor series 

is 𝑓(𝑥0) + (𝑥 − 𝑥0)𝑓
′(𝑥0) +

(𝑥−𝑥0)
2

2!
𝑓′′(𝑥0) +

(𝑥−𝑥0)
3

3!
𝑓′′′(𝑥0) + ⋯+

(𝑥−𝑥0)
𝑛

𝑛!
𝑓(𝑛)(𝑥0) + ⋯, where it is 

immediate that at 𝑥0, the function’s value and all it’s derivatives (first, second, etc) all agree with the 
taylor series (provided it converges in an interval around 𝑥0), but it is not obvious that this happens at 
other points. 

We prove that (1 + 𝑥)𝑛 actually equals its Taylor series when |x|<1. Consider this: It can be shown 
using standard A level techniques that the unique solution to the differential equation 

𝑑𝑦

𝑑𝑥
=

𝑛𝑦

1 + 𝑥
 



that satisfies y=1 when x=0 is 𝑦 = (1 + 𝑥)𝑛 (you should be able to show this), and that if 

𝑦 = 1 + 𝑛𝑥 +
𝑛(𝑛 − 1)

2!
𝑥2 +

𝑛(𝑛 − 1)(𝑛 − 2)

3!
𝑥3 + ⋯ 

Then the differential equation above is satisfied (I will walk through this part) 

Goal: To show that this satisfies the differential equation above with the initial conditions so it must 
equal  (1 + 𝑥)𝑛. Trying to differentiate this power series will give  

𝑑𝑦

𝑑𝑥
= 𝑛 + 𝑛(𝑛 − 1)𝑥 +

𝑛(𝑛 − 1)(𝑛 − 2)

2!
𝑥2 +

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

3!
𝑥3 + ⋯ 

𝑥
𝑑𝑦

𝑑𝑥
= 𝑛𝑥 + 𝑛(𝑛 − 1)𝑥2 +

𝑛(𝑛 − 1)(𝑛 − 2)

2!
𝑥3 +

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

3!
𝑥4 + ⋯ 

(1 + 𝑥)
𝑑𝑦

𝑑𝑥
= 𝑛 + 𝑛𝑥 + 𝑛(𝑛 − 1)𝑥 + 𝑛(𝑛 − 1)𝑥2 +

𝑛(𝑛 − 1)(𝑛 − 2)

2!
𝑥2 +

𝑛(𝑛 − 1)(𝑛 − 2)

2!
𝑥3

+
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

3!
𝑥3 +

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

3!
𝑥4 +

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)

4!
𝑥4

+ ⋯ 

This looks complicated, but don’t worry, it simplifies nicely. 

(1 + 𝑥)
𝑑𝑦

𝑑𝑥
= 𝑛 + 𝑛𝑥(1 + (𝑛 − 1)) + 𝑛(𝑛 − 1)𝑥2 (1 +

𝑛 − 2

2
) +

𝑛(𝑛 − 1)(𝑛 − 2)

2!
𝑥3 (1 +

𝑛 − 3

3
)

+
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

3!
𝑥4 (1 +

𝑛 − 4

4
) + ⋯ 

= 𝑛 + 𝑛𝑥(𝑛) + 𝑛(𝑛 − 1)𝑥2 (
𝑛

2
) +

𝑛(𝑛 − 1)(𝑛 − 2)

2!
𝑥3 (

𝑛

3
) +

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

3! ∗ 4
𝑥4 (

𝑛

4
) + ⋯ 

= 𝑛(1 + 𝑛𝑥 +
𝑛(𝑛 − 1)

2!
𝑥2 +

𝑛(𝑛 − 1)(𝑛 − 2)

3!
𝑥3 + ⋯ 

So we satisfy 

(1 + 𝑥)
𝑑𝑦

𝑑𝑥
= 𝑛𝑦 

which is a rearrangement of the original differential equation. However, we’re not quite done, since 

although the derivative of the sum is the sum of the derivative for finite sums, I have just used it for an 

infinite sum and I have not yet justified it. In general in maths, it requires justification to extrapolate 

anything finite to anything infinite. We also haven’t addressed why this expansion is only valid if |x|<1. 

Before reading on, try using your calculator to calculate the sum of the binomial series for (1 + 𝑥)−0.5 
at (i) x=0.5 and (ii) x=2. See how the values change as you add more terms until the term in 𝑥5. Can you 
guess why x has to be between -1 and 1? 

Note: Since calculating the coefficients is not the point of this exercise, I’ll give that the series is 

 (1 + 𝑥)−0.5 = 1 −
1

2
𝑥 +

3

8
𝑥2 −

5

16
𝑥3 +

35

128
𝑥4 −

63

256
𝑥5 + ⋯  

Consider the ratio between, say, the 𝑥99 coefficient and the 𝑥100coefficient. In order to get from one 
coefficient to the other, we need to divide by 100x and multiply by n-99. So, since n is fixed, the ratio 

which is 100𝑥

𝑛−99
 will approach -x as “100” and “99” get larger and larger. The takeaway should be that only 

when x is between -1 and 1 does the ratio approach between -1 and 1 meaning the terms get smaller in 



size so the sum doesn’t go off to infinity. For positive integer exponents the series is valid everywhere 
sine the terms eventually are all 0. 

The formal justification for why we can differentiate an infinite power series and why it indeed 
converges with a rigorous proof and not a hand waving argument when x is between -1 and 1will be left 
as an appendix, since it is technical and not part of the “core” of this argument. These last few 
paragraphs relate to an area of maths called analysis. 

For other taylor series which are typically only used in level 5, here is the differential equation used to 
prove their correctness, note that the full justification is also given in the appendix. 

𝑒𝑥 : 
𝑑𝑦

𝑑𝑥
= 𝑦 and y=1 when x=0 (Always converges since the ratio of consecutive terms always -> 0) 

ln (1 + 𝑥): 
𝑑𝑦

𝑑𝑥
=

1

1+𝑥
 and y=0 when x=0, or from differentiating the series for  (1 + 𝑥)−1 (Also valid 

when |x|<1) 

sin (𝑥) and cos (𝑥): Comes from Euler’s identity 𝑒𝑖𝑥 = 𝑐𝑜𝑠(𝑥) + 𝑖𝑠𝑖𝑛(𝑥) which we will prove in the 
video in the section on exponentials and logarithms, then equating the real and imaginary parts. 
(Always converges since the ratio of consecutive terms always -> 0). Alternatively, you can use the 

differential equation 𝑑
2𝑦

𝑑𝑥2 + 𝑦 = 0 with the initial conditions satisfied by sin and cos when x=0. We  

learn how to solve this differential equation above and differential equations like it in levels 5 and 6. It 
is ok for us to not develop this theory here because it is only in those levels where you are actually 
expected to know the series for sin and cos. 

Partial fractions 

This one is tricky, in the exam if you’re satisfied just knowing you can check manually that your answer 
works then great, but here we will justify why we use the method that we do. 

The precise statement we want to prove is as follows: 

If we have a fraction like 

𝑃(𝑥)

(𝑥 − 𝑎1)𝑚1(𝑥 − 𝑎2)𝑚2 …(𝑥 − 𝑎𝑛)𝑚𝑛
 

Where P(x) is a polynomial 

Then it can be written in the following form 

𝑄(𝑥) +
𝑏1

𝑥−𝑎1
+

𝑏2

(𝑥−𝑎1)2
+ ⋯+

𝑏𝑚1

(𝑥−𝑎1)𝑚1
+(n-1 more analogous sums for the rest of the roots 𝑎𝑘) 

Where Q(x) is a polynomial. 

Note that this is an extremely general statement, in A levels n and the m’s will not get bigger than 2 or 
3. 

Definition: the degree (often called deg) of a polynomial is defined as the highest power of x that 
appears. 

Note that if we divide P(x) by the denominator of our original expression, we will get a polynomial Q(x) 
(which will be 0 if P(x) has a lower degree than the denominator) and a remainder divided by the 



denominator of the original expression, where this remainder will also have a degree lower than the 
degree of the denominator (Otherwise we could keep doing long division on it until the degree is 
lower). Therefore we can assume that P(x) has a degree lower than the denominator and then prove 
that we get the not Q(x) terms. 

In order to do this proof, we will need to use a collorary of Bezout’s identity, essentially the assertion 
that if 𝑃1(𝑥) and 𝑃2(𝑥) are polynomials with no roots in common (which by the factor theorem is 
equivalent to having a greatest common divisor of 1) and that they are both of the form 
𝐶(𝑥 − 𝑎1)

𝑚1(𝑥 − 𝑎2)
𝑚2 …(𝑥 − 𝑎𝑛)

𝑚𝑛  (ie a product of linear factors) then there exist polynomials A(x) 
and B(x) such that A𝑃1(𝑥)+B𝑃2(𝑥)=1. It turns out that the assertion that the polynomial is a product of 
linear factors is true for all polynomials and this is called the fundamental theorem of algebra, 
however this is not needed for our purposes, so although there are nice proofs of this fact, we will do 
them in a later document since this is long enough, so we will add the condition that 𝑃1(𝑥) and 𝑃2(𝑥) 
are products of linear factors so this way there are no implicit assumptions, and it will be enough for 
our proof. We also do not have uniqueness of polynomial factorization fully proven, but the factor 
theorem means no common roots is equivalent to no common factors. 

First, we will do a proof assuming the fact above, then we will prove it. We define that the Euclidian 
division of a polynomial P by a non-zero polynomial T is defined as P=TQ+R where R is a remainder 
polynomial with deg(R)<deg(T). You can see that surely this must always exist if you’ve ever done 
polynomial long division before and you think about it hard enough. 

Now I will define F as the numerator of the original expression which by assumption has degree lower 
than the denominator of the original expression which I will call G. I will then define 𝐺1 = (𝑥 − 𝑎1)

𝑚1  
and 𝐺2 = (𝑥 − 𝑎2)

𝑚2(𝑥 − 𝑎3)
𝑚3 …(𝑥 − 𝑎𝑛)

𝑚𝑛. Since the a’s are distinct, 𝐺1 and 𝐺2 have no common 
roots, so Bezout’s identity applies. Let C𝐺1+𝐷𝐺2=1 then we have the following: 

 

The last line follows from the fact that clearly the degree of the product of polynomials is the sum of 
the degrees so therefore deg(𝐹 − 𝐹1𝐺2) = deg(𝐹2)+deg(𝐺1), since we have 𝐹 = 𝐹1𝐺2 + 𝐹2𝐺1 

so 𝐹 − 𝐹1𝐺2=𝐹2𝐺1. 

Then the next step is because the degree of the difference of two polynomials can’t be more than the 
degree of both of them, then the next step follows because by earlier assertions it follows that the 



degree of both things in the max() are decreasing in the step given, and in fact now both equal to 
deg(G). Since 𝐺 = 𝐺1𝐺2 by definition, we have deg(G)=deg(𝐺1)+deg(𝐺2) so the last step follows. 

Applying this again to the fraction 𝐹2

𝐺2
 and then iteratively doing this n times we get the following: 

𝑃(𝑥)

(𝑥 − 𝑎1)𝑚1(𝑥 − 𝑎2)𝑚2 …(𝑥 − 𝑎𝑛)𝑚𝑛
 

=𝑄(𝑥) +
𝑇1(𝑥)

(𝑥−𝑎1)𝑚1
+

𝑇2(𝑥)

(𝑥−𝑎2)𝑚2
+ ⋯+

𝑇𝑛(𝑥)

(𝑥−𝑎𝑛)𝑚𝑛
 

Where each T polynomial has degree less than its denominator. It remains to show that each of these 
can be broken up into constants divided by powers of the respective linear factors. I will show how 
this is done for the first fraction and the method for the rest of them is analogous. If 𝑚1=1 then we’re 
done, so suppose 𝑚1>1 so 𝑇1(𝑥) has degree at most 𝑚1 − 1. 

We can write 𝑇1(𝑥) = 𝑎0 + 𝑎1𝑥
1 + 𝑎2𝑥

2 + ⋯𝑎𝑚1−1𝑥
𝑚1−1 where each a can be 0 or anything else. Now 

just watch this 

𝑇1(𝑥)

(𝑥 − 𝑎1)𝑚1
 

=
𝑎0 + 𝑎1𝑥

1 + 𝑎2𝑥
2 + ⋯𝑎𝑚1−1𝑥

𝑚1−1

(𝑥 − 𝑎1)𝑚1
 

=
𝑎0 + 𝑎1𝑥

1 + 𝑎2𝑥
2 + ⋯𝑎𝑚1−1𝑥

𝑚1−1 − 𝑎𝑚1−1(𝑥 − 𝑎1)
𝑚1−1

(𝑥 − 𝑎1)𝑚1
+

𝑎𝑚1−1(𝑥 − 𝑎1)
𝑚1−1

(𝑥 − 𝑎1)𝑚1
 

Notice that the degree of the first term is at most 𝑚1 − 2 because the coefficient in 𝑥𝑚1−1 is being 
cancelled. Let’s suppose the new numerator of this first term is 𝑏0 + 𝑏1𝑥

1 + 𝑏2𝑥
2 + ⋯𝑏𝑚1−2𝑥

𝑚1−2 

=
𝑏0 + 𝑏1𝑥

1 + 𝑏2𝑥
2 + ⋯𝑏𝑚1−2𝑥

𝑚1−2

(𝑥 − 𝑎1)𝑚1
+

𝑎𝑚1−1

𝑥 − 𝑎1
 

Now do a similar trick: 

=
𝑏0 + 𝑏1𝑥

1 + 𝑏2𝑥
2 + ⋯𝑏𝑚1−2𝑥

𝑚1−2 − 𝑏𝑚1−2(𝑥 − 𝑎1)
𝑚1−2

(𝑥 − 𝑎1)𝑚1
+

𝑏𝑚1−2(𝑥 − 𝑎1)
𝑚1−2

(𝑥 − 𝑎1)𝑚1
+

𝑎𝑚1−1

𝑥 − 𝑎1
 

Now the degree of the first term decreases again, and we get a 
𝑏𝑚1−2

(𝑥−𝑎1)2
 term after cancelling 

(𝑥 − 𝑎1)
𝑚1−2 from the numerator and denominator of our second term, and we can keep decreasing 

the degree and getting a constant over the next power 𝑚1 times until we get the desired result. 

Proof of part of Bezout’s identity for the partial fractions proof 

Ok so we have two polynomials which are products of linear factors and have no roots in common. 
Call the one with larger degree 𝑃1 and the one with smaller degree 𝑃2. If their degrees are the same it 
does not matter what we call them. Now do Euclidean division: 𝑃1 = 𝑄1𝑃2 + 𝑅1 where 
deg(𝑅1)<deg(𝑃2). Now we work with polynomials 𝑅1 and 𝑃2 and do the same thing, except now the 
smallest degree of the two is lower. We get 𝑃2 = 𝑄2𝑅1 + 𝑅2 and then do the same with 𝑅1 and 𝑅2and 
again the smaller of these (𝑅2) has a smaller degree than the smallest degree of the previous two we 
worked with. Keep doing this until the remainder is a constant. Here is an example where for two 



polynomials with no common root we explicitly find polynomials such that 1 equals a polynomial 
times 𝑃1 plus a polynomial times 𝑃2: 

𝑃1 = (𝑥 − 1)2(𝑥 − 2), 𝑃2 = (𝑥 + 1)(𝑥 + 3) 

𝑃1 = 𝑥3 − 4𝑥2 + 5𝑥 − 2, 𝑃2 = 𝑥2 + 4𝑥 + 3 

𝑥3 − 4𝑥2 + 5𝑥 − 2 = (𝑥 − 8)(𝑥2 + 4𝑥 + 3) + (34𝑥 + 22) 

𝑥2 + 4𝑥 + 3 = (
1

34
𝑥 +

57

578
) (34𝑥 + 22) +

240

289
 

Now we are done, since we can express 240

289
 as 34𝑥 + 22 times a polynomial plus 𝑥2 + 4𝑥 + 3 times a 

polynomial (by rearranging the bottom equation) but then we can express 34𝑥 + 22  as 𝑥2 + 4𝑥 + 3 
times a polynomial plus 𝑥3 − 4𝑥2 + 5𝑥 − 2 times another polynomial (by rearranging the second 

equation from the bottom). This means that our original target, 240

289
 equals 𝑥2 + 4𝑥 + 3 times a 

polynomial plus 𝑥3 − 4𝑥2 + 5𝑥 − 2 times another polynomial. Simply multiply these polynomials by 
240

289
 then we’re done, in fact we get: 

240

289
= 𝑥2 + 4𝑥 + 3 − (

1

34
𝑥 +

57

578
) (34𝑥 + 22) 

1 =
289

240
(𝑥2 + 4𝑥 + 3) −

289

240
(

1

34
𝑥 +

57

578
) (34𝑥 + 22) 

1 =
289

240
(𝑥2 + 4𝑥 + 3) −

289

240
(

1

34
𝑥 +

57

578
) (𝑥3 − 4𝑥2 + 5𝑥 − 2 − (𝑥 − 8)(𝑥2 + 4𝑥 + 3)) 

1 =
289

240
(𝑥2 + 4𝑥 + 3) −

289

240
(

1

34
𝑥 +

57

578
) (𝑥3 − 4𝑥2 + 5𝑥 − 2) +

289

240
(

1

34
𝑥 +

57

578
) (𝑥 − 8)(𝑥2 + 4𝑥 + 3) 

1 = −(
17

480
𝑥 +

57

480
) (𝑥3 − 4𝑥2 + 5𝑥 − 2) + (

17

480
𝑥2 −

79

480
𝑥 +

61

240
) (𝑥2 + 4𝑥 + 3) 

1 = −(
17

480
𝑥 +

57

480
)((𝑥 − 1)2(𝑥 − 2)) + (

17

480
𝑥2 −

79

480
𝑥 +

61

240
) ((𝑥 + 1)(𝑥 + 3)) 

Note that it remains to show that we always end up with a constant like 240

289
 that is not zero, otherwise 

we can’t divide by it like in the example above! 

Any two pairs of polynomials we work with will not share any common factors, since lets say for the 
sake of example that 𝑅3 and 𝑅4 shared a common factor, then 𝑅2 which is a quotient polynomial times 
𝑅3 plus 𝑅4 will have that factor, then 𝑅1 which is a quotient polynomial times 𝑅2 plus 𝑅3 must also 
have that factor, and we keep going until realizing that by this reasoning our original P’s must have had 
that original factor. If 𝑅𝑛 was a polynomial of degree at least 1 but then 𝑅𝑛+1 was suddenly 0 and not a 
non-zero constant, then that would mean that 𝑅𝑛 would divide 𝑅𝑛−1 with zero remainder as we would 
get 𝑅𝑛 = 𝑄𝑅𝑛−1 + 0, meaning 𝑅𝑛 and  𝑅𝑛−1 share a common factor of 𝑅𝑛−1 which is a contradiction, 
as our original P’s were assumed to have no common factors. 

More on exponentials and logarithms 

This is explained in a video (which is quite involved), but consider the following motivating question to 
see why further discussion on this is needed: 



If we have 𝑑𝑦

𝑑𝑥
= 𝑦 

Then the standard separation of variables method gives ∫
1

𝑦
𝑑𝑦 = ∫1𝑑𝑥 

So ln(y)=x+c 

So 𝑦 = 𝑒𝑥𝑒𝑐 

But then we say that 𝑦 = 𝐴𝑒𝑥  for any A, but if we are working in the real numbers 𝑒𝑐  is always positive. 
It turns out that 𝑦 = −𝑒𝑥 does in fact satisfy the differential equation, but it is not at all obvious how it  
isn’t absurd to say A=-1 when A was derived from the exponential function which does not appear to 
take negative values. After all, 𝑒𝑥 is clearly always positive from the graph! But, things are not always 
as they seem. 

The video derives from basic exponent laws what it means to take a positive real number to a non-
integer real power, and then defines exponentiation with complex exponents and extend the definition 
of powers to the complex numbers. I define the complex logarithm and the problems that come from 
it being multi-valued or having a branch cut. I explain which exponent and logarithm rules work in the 
complex numbers and why. I then discuss a bit about the integral of 1/x and give a better explanation 
for the ln(|x|) standard answer. I do a brief aside on contour integration (Don’t worry if you don’t 
understand this, I explain it again in the technical results document. Hopefully you understand it 
then.) since it will be used in a later proof, then finally go back and answer the motivating differential 
equations question above. 

Appendix: Binomial theorem technical details (If everything else wasn’t basically an analysis 
course in disguise, this definitely is) 

First, we will tackle the problem of showing that the binomial series always converges if |x|<1. 

We have established that the ratio of consecutive terms in the binomial series approaches -x, formally 

the ratio is given by 𝐴𝑥

𝑛−(𝐴−1)
 between the 𝑥𝐴 and 𝑥𝐴−1 terms. The difference between this and -x is  

𝐴𝑥

𝑛−(𝐴−1)
+ 𝑥 =

𝐴𝑥+𝑛𝑥−(𝐴−1)𝑥

𝑛−(𝐴−1)
=

𝑥(𝑛+1)

𝑛+1−𝐴
 which gets as small as we want if we make A large enough. 

Formally, we can see that for any 𝜀, no matter how small, if A is at least 𝑛 + 1 +
𝑥(𝑛+1)

𝜀
 then the ratio 

between consecutive terms will always be within 𝜀 of -x. This is what it formally means to say that the 
ratios will converge to -x in the limit. Now we show that if in a series the ratio of the terms approaches 
in this sense a value with absolute value less than 1 (which we have shown that the binomial series 
does when |x|<1) it converges, and in fact it is absolutely convergent, meaning that the sum of the 
absolute values of the terms converges, which will be important later. Note that absolute convergence 
implies convergence as informally by the triangle inequality the “tails” of the original sum are less big 
than the “tails” of the sum of absolute values. 

First, we see that ∑ |𝑎𝑛|
∞
𝑛=1  converges if |𝑎𝑛+1|

|𝑎𝑛|
 is always less than some number c which is less than 1 

because ∑ 𝑐𝑛−1|𝑎1|
∞
𝑛=1  converges by geometric series and the sequence ∑ |𝑎𝑛|

∞
𝑛=1  is a sequence of 

positive numbers where since  𝑐𝑛−1|𝑎1| ≥ |𝑎𝑛| by definition we have that ∑ |𝑎𝑛|
∞
𝑛=1  is a limit of 

increasing positive numbers bounded above by  ∑ 𝑐𝑛−1|𝑎1|
∞
𝑛=1  so the values ∑ |𝑎𝑛|

𝑚
𝑛=1  for different m’s 

must have a least upper bound (This is obvious and often a first principle/axiom) so that is what it 
approaches as m goes to infinity, ie ∑ |𝑎𝑛|

∞
𝑛=1  converges. 



Now we see that ∑ |𝑎𝑛|
∞
𝑛=1  converges if |𝑎𝑛+1|

|𝑎𝑛|
 is eventually (ie whenever n>k for some k) always less 

than some number c which is less than 1. This is because we split the sum into the first k terms (which 
converges as it is a finite sum) and the rest of the terms (which converges by the fact above). Now we 

see that ∑ |𝑎𝑛|
∞
𝑛=1  converges if |𝑎𝑛+1|

|𝑎𝑛|
 approaches a number less than 1. This is because, for example, 

lets say it approached 0.5, then by the definition of approaching it will always be eventually between 
0.25 and 0.75 and we apply the thing above. 

Also, if |x|>1 the terms eventually continue to grow in magnitude as their ratio eventually becomes >1 
for all terms after a certain point so the binomial series can’t possibly converge. 

Ok so now we know that the binomial series converges absolutely if x is less than 1. Now I will explain 
why absolute convergence is important. 

When we justify differentiating a power series we will be working with sums. We note that intuitively, 
we know that if we rearrange the order of the terms in the sum, the sum will not change. However, this 
is not always true for infinite sums. For example: 

 

 

Fun fact: it turns out that S=ln(2) 

However, if you take the absolute value of all the terms in the sum, then the sum is well behaved and 
will equal the same value no matter how you order the terms. The proof of this will use a formal 
definition of convergence, and the triangle inequality which says that 

|𝑎1 + 𝑎2 + 𝑎3 + ⋯+ 𝑎𝑛| ≤ |𝑎1| + |𝑎2| + |𝑎3| + ⋯+ |𝑎𝑛| 

The reason for this is (using complex numbers ideas) because the first expression is like walking a 
distance of |𝑎1| in some direction in the complex plane, then a distance of |𝑎2| in some other 
direction, then a distance of |𝑎3| in some other direction, and so on, then recording your distance 
from the origin at the end. The right hand expression is like walking all of those distances in the same 
direction and then recording how far you’ve walked, which intuitively will always be a distance at least 
as long. This will be used in the proof below (Note: The triangle inequality is true for infinite sums, as 
the sum to n of |𝑎1 + 𝑎2 + 𝑎3 + ⋯+ 𝑎𝑛| is less than or equal to the sum to n of                                           
|𝑎1| + |𝑎2| + |𝑎3| + ⋯+ |𝑎𝑛| for all n so in the limit as n goes to infinity (ie the infinite sum) the latter 
expression cannot possibly be less!) Now here is the proof: 



 

Images: Handwritten proof absolute 
convergence implies stuff plays nice. 

Ok now that that’s done here is a proof we can differentiate infinite power series in the usual way 
under certain conditions. We call the radius of convergence of a power series R where R is the largest 
value such that for all x such that |x|<R the power series converges when evaluated at x. We know that 
for the binomial series R=1, and we will show that differentiation of power series works when x is 
within the radius of convergence. Here are some things we will need: 

 



 

 

Note: the comparison test is the idea that a sum of positive terms bounded by a convergent sum of 
positive terms must be convergent, because the first sum’s partial sums (sums up to n) are bounded 
above so they have a least upper bound which they must converge to. 

 

Note: in the image below, something being o(h) means that something divided by h approaches 0 as h 
approaches 0, in other words it gets small “much faster than h”, and by rearranging, you can see that 
the thing it says we want to be o(h) being o(h) means the difference between the actual derivative in 
question and the derivative we want is indeed zero. 

 

 



 

Interestingly, by taking the antiderivative of the binomial series for (1 + 𝑥)−1 we get a taylor series for 
ln(1+x) valid when |x|<1, and it turns out that this series converges when x=1, and while the full 
justification will not be given here (see Abel’s theorem for power series), this is an intuition for the 
“Fun fact: S=ln(2)” fun fact above. It really is all related! 

Note: Differentiation of power series multiplies the ratio between consecutive terms by n/n-1 and 
shifts the terms by 1, so if the ratio approached something less than 1 or more than 1 that property will 
still hold after differentiation, therefore the radius of convergence of the differentiated or 
antidifferentiated power series is the same as the radius of convergence of the original power series 
(This argument works for the “usual” functions where it is the case that the ratio between consecutive 
terms approaches something, but the statement is true more generally even in some cases where this 
argument does not work, but you do not need to know this for A level). 

Appendix II: More on the definition of an integral 

The above definition of the integral (The riemann integral) is perfectly good for continuous functions – 
we just showed that. However the modern definition of the integral (The lebesgue integral) is 
something which is easy to see (once we actually define it) is the same as the riemann integral for 
continuous functions, and even functions that are defined by many continuous parts, but it is defined 
for more diverse functions and we will need this definition when we justify stuff in statistics 2 levels 
from now. We need some preliminary definitions. 

Definition: Pointwise supremum 

Suppose I have a sequence of functions 𝑓1(𝑥), 𝑓2(𝑥), … then the pointwise supremum is the function 
g(x) such that g(a) is the least upper bound of the values 𝑓1(𝑎), 𝑓2(𝑎), 𝑓3(𝑎),… 

Definition: Indicator function 

An indicator function is a function that takes the value 1 if the input is in the set, and 0 otherwise. For 
example, the indicator function for the set (0,1) U (1.5,2) looks like this: 

Image: Shows the graph of this indicator function: 1 in 
the interval, 0 elsewhere. 



Here, I am estimating the integral ∫ 3𝑥 − 𝑥2𝑑𝑥
3

0
 by a linear combination of indicator functions. The 

integral of an indicator function is defined as being equal to the total length* of the sets in question, 
and in the image below we see that we have approximated the area by taking a bunch of indicator 
functions, multiplying them by something, and adding them together. 

Image: Shows the integral of a graph approximated 
below by rectangles, instead of tall and thin they are short and thick. 

* For pedants, at this level, your intuitive idea of length is enough, I believe that trying to give the 
rigorous definition would make everything here more complicated than it needs to be for the intended 
audience and wouldn’t add much substance to the proofs we will do. It is also true that not every 
subset of the reals has a well defined length, however it is true for all functions we will work with in 
this level and level 6. All theorems in level 6 that use this definition of the integral only apply to 
functions or probability distributions such that this is the case. Times when this is not the case are 
very strange and will not come up in anything we do in this level. 

Notice how the image above is an underestimate since our linear combination of indicator functions 
never exceeds our function. The integral is then defined as the least upper bound of the area we can 
get by underestimating it this way. That’s the formal definition of the lebesgue integral.  

Definition: Simple function 

A simple function is a linear combination of finitely many indicator functions. 

The riemann integral definition on continuous functions gives the same value because each of the 
rectangles can be considered to be a simple function and we just want the least upper bound of 
combinations of areas of those that are below the function, but the lebesgue integral is more diverse 
as the indicator functions do not need to be of intervals – they can be of more exotic sets provided 
their length is well defined. Adding in such indicators to a riemann integrable function does not 
increase the least upper bound because we can bound the integral above as close as we want to this 
least upper bound. To put it another way, it is like the image above has a riemann integral value of 4.5, 
so I can make a simple function our of rectangles of area 4.5000000000001 that is always larger than 
that parabola (since it is continuous) and say Hey, if you want a larger integral you have to go outside 
these at some point, so your least upper bound cannot exceed 4.5000000000001, and I can do that 
for values as close to 4.5 as I like. 

 


