
Matrix multiplication is associative 

Let A be n*m, B be m*k, and C be k*l. 

Then (𝐴𝐵)𝑖𝑗 denotes the entry in AB in row i and column j. By matrix multiplication this is ∑ 𝐴𝑖𝑟𝐵𝑟𝑗
𝑚
𝑟=1 . 

Also, ((𝐴𝐵)𝐶)
𝑖𝑗

= ∑ (𝐴𝐵)𝑖𝑟𝐶𝑟𝑗
𝑘
𝑟=1 . Using the sum for (𝐴𝐵)𝑖𝑟 we get ((𝐴𝐵)𝐶)

𝑖𝑗
= ∑ (𝐴𝐵)𝑖𝑟𝐶𝑟𝑗

𝑘
𝑟=1 =

∑ ∑ 𝐴𝑖𝑠𝐵𝑠𝑟
𝑚
𝑠=1 𝐶𝑟𝑗

𝑘
𝑟=1 . If you do the same for (𝐴(𝐵𝐶))

𝑖𝑗
 you will get the same sum. I’m too lazy to 

actually do it but I think you probably can. If the elements all agree the matrices are equal. 

Matrices satisfy (A+B)C=AC+BC 

This is kind of obvious since matrix addition just sums the elements, then it is immediate that: 

∑ 𝐴𝑖𝑟𝐶𝑟𝑗

𝑚

𝑟=1

+ ∑ 𝐵𝑖𝑟𝐶𝑟𝑗

𝑚

𝑟=1

= ∑(𝐴 + 𝐵)𝑖𝑟𝐶𝑟𝑗

𝑚

𝑟=1

 

Again, the elements agree so the matrices are equal. 

Matrix determinant is volume 

This has been proven in a video using some visual arguments about vectors. Note that in this proof we 
show that the sign of the determinant changes when we swap the columns. The fact that whether we 
have an even or odd number of swaps is well defined (ie for some matrix you can tell which situation 
we are in) is something which we will prove in Level 7 since the proof is not hard but it is not needed 
for any of this. For the three dimensional case you can think of whether the transformed axes are left 
or right handed (right handed meaning if you take the x-y plane to be parallel to the page with the 
positive y direction less than 180 degrees counterclockwise from the positive x direction then the z 
axis will go out of the page). 

Matrix inverse formula works 

This has been proven in the same video as the determinant proof video using the determinant formula 
and the fact that it is volume. 

Polar coordinate integration 



Image: Shows the area of an arc of a polar 
curve approximated by thin right angled triangles 

We see from the diagram above that we are summing the area of right angled triangles which have a 
base of r, a height of rsin(dϑ) which is therefore approximately rdϑ and approaches rdϑ as dϑ goes to 0. 

So the area of these triangles is 1
2

𝑟2𝑑ϑ. Summing these areas and taking a limit as dϑ goes to 0 is kind 

of what an integral is, so we get the formula ∫  
1

2
𝑟2𝑑ϑ. 

Some power series properties 

Definition: Least upper bound / Supremum 

This essentially means the smallest number greater than or equal to a set of numbers. This always 
exists, but it is not necessarily always attained, for example the sequence 0.9, 0.99, 0.999 has a least 
upper bound of 1 but 1 is not attained in this sequence. It is obvious that any bounded set has a least 
upper bound, so therefore any increasing sequence which is bounded above converges as it 
converges to its least upper bound, similarly for decreasing sequences bounded below. 

The infimum is the opposite, it is the highest lower bound. 

If I have a sequence, then the lim inf of the sequence is defined as the limit of the infima of the 
sequence as I remove more terms at the start. Take some time to think about this definition and the 
following corrolaries if you need to, since I’m not sure how confusing this will be for someone who’s 
never done analysis. 

As an example, if my sequence is 0, 2, 0.9, 2, 0.99, 2, 0.999, etc then if I remove terms from the start of 
this sequence the infima will approach 1 so the lim inf is 1. The limit of the sequence does not exist 
since the terms do not eventually get as close as you want a value. The lim sup, which is the opposite 
of the lim inf (Essentially the limit of suprema) of this sequence is 2. Since the infimum of a sequence 
does not decrease when you remove terms, the lim inf can be thought of the supremum of the infima 
of the tails of the sequence (ie the sequences you get after removing terms). In more precise terms, 



lim inf
𝑛→∞

𝑎𝑛 = sup
𝑛

inf
𝑘≥𝑛

𝑎𝑘 In fact, the lim inf of a sequence always exists, it just might be infinity if the 

sequence is unbounded, since the infima of the tails are increasing, and if they are increasing and 
bounded they will converge to something (as if something is bounded it has a least upper bound), 
otherwise they will go to infinity. 

We will now prove some properties of power series. Specifically, that all power series have a unique 
radius of convergence R with the property that if |x|<R then the series converges absolutely, and if 
|x|>R then the series diverges. The proof of this comes from the cambridge tripos notes for analysis I 

 

 

We will now prove that in fact, 𝑅 =
1

lim sup √|𝑎𝑛|
𝑛 . Here is a proof of that, also from cambridge Analysis I: 

 

These results will be used when we prove a result for when series solutions for differential equations 
are valid. 



We will now prove that sums and products of power series converge inside the common radius of 
convergence of the power series in question, and that compositions of power series converge on a 
slightly different radius. We write x as if this were not centered at 0 it would just be 𝑥 − 𝑥0. 

For sums: We know from earlier that ∑ 𝑎𝑛𝑥𝑛  and∑ 𝑏𝑛𝑥𝑛are absolutely convergent if |x|<R. Therefore 
∑ |𝑎𝑛 + 𝑏𝑛|𝑥𝑛 ≤ ∑ |𝑎𝑛|𝑥𝑛 + ∑ |𝑏𝑛|𝑥𝑛 ≤ ∑|𝑎𝑛𝑥𝑛| + ∑|𝑏𝑛𝑥𝑛| < ∞ (by the triangle inequality, recall the 
idea that |a+b|≤|a|+|b|). 

For products: We note that if we have two power series A and B, then the 𝑥𝑛 term of AB has 
contributions from the 𝑥0 term of A with the 𝑥𝑛 term of B, the 𝑥1 term of A with the 𝑥𝑛−1 term of B, the 
𝑥2 term of A with the 𝑥𝑛−2 term of B, and so on. Therefore, the coefficient of the 𝑥𝑛 term can be given 
by ∑ 𝑎𝑘𝑐𝑛−𝑘

𝑛
𝑘=0 . So AB can be written as ∑ (∑ 𝑎𝑘𝑐𝑛−𝑘)𝑥𝑛𝑛

𝑘=0
∞
𝑛=0 . We need absolute convergence to 

justify rearranging the terms like this, but luckily we have that, since if |x|<R then 
(∑|𝑎𝑛𝑥𝑛|)(∑|𝑏𝑛𝑥𝑛|) < ∞ since each sum converges in the common radius of convergence of the 
power series a and b. 

For compositions: Suppose we want to find a power series for f(g(x)) where f is ∑ 𝑎𝑛𝑥𝑛, g is ∑ 𝑏𝑛𝑥𝑛. Set 
the radius of convergence of f and g to be 𝑅𝑓  and 𝑅𝑔 respectively. Suppose that 𝑔(𝑥0) = 0, because if 
𝑔(𝑥0) = 𝑘 then we can rename f to f(x-k) then g will still be 0 at 𝑥0. Let 𝑔+(𝑥) = ∑ |𝑏𝑛|𝑥𝑛. Then we have 
a closed disc where |𝑔+|<𝑅𝑓  (possible since 𝑔+(0) = 0 and power series are continuous inside their 
radius of convergence since they are differentiable so 𝑔+can be as small as we want if we make the 
disc small enough, also making sure the disc does not have a radius larger than 𝑅𝑔). Then inside this 
disc, the sum ∑ 𝑎𝑛𝑔(𝑥)𝑛 is absolutely convergent, since the absolute values are given by 
∑ |𝑎𝑛|𝑔+(|𝑥|)𝑛 < ∑|𝑎𝑛|𝑅𝑓

𝑛 < ∞. Therefore, we can safely rearrange the terms as we like, so composite 
power series converge inside a finite radius. In the case where f is the exponential function, the power 
series in question converges in the radius of convergence of g, because g is always within 𝑅𝑓  so we 
just need the other condition that x is within 𝑅𝑔. We will use this fact for the differential equations 
series solutions proof as well. 

Integrating factor well-defined-ness 

A constant of integration added to the integrating factor can be moved to the constant out front of the 
exponential so it does not matter which antiderivative we use in this context. 

Second order differential equations 

Technically this is Second order ordinary linear differential equations with constant coefficients. 

To explain why the solutions are of the form they are and why those are the general solutions, I will 
start by imitating how I think textbooks should introduce it. Currently it feels like you are just following 
a bunch of rules for the general solution, such as adding x factors for repeated terms, but now I will 
show where these rules come from. Pretend like you’ve only seen how to solve first order differential 
equations using A level techniques, and that you are given the following problem: 

Use the substitution 𝑢 =
𝑑𝑦

𝑑𝑥
− 2𝑦 to solve the differential equation 𝑑

2𝑦

𝑑𝑥2 − 5
𝑑𝑦

𝑑𝑥
+ 6𝑦 = 0. 

Lets see how we might do this. We observe that 𝑑𝑢

𝑑𝑥
=

𝑑2𝑦

𝑑𝑥2 − 2
𝑑𝑦

𝑑𝑥
 by differentiating both sides of the 

given substitution, which is a natural step as we need to somehow get a 𝑑
2𝑦

𝑑𝑥2
 term. Now we can try 



subtracting 3u so that that we have the right 𝑑𝑦

𝑑𝑥
 coefficient of -5, specifically we get 𝑑𝑢

𝑑𝑥
− 3𝑢 =

𝑑2𝑦

𝑑𝑥2 −

5
𝑑𝑦

𝑑𝑥
+ 6𝑦. How lucky indeed, we get the original differential equation! To see what is going on, 

consider this: 

𝑑2𝑦

𝑑𝑥2
− 5

𝑑𝑦

𝑑𝑥
+ 6𝑦 

 

=
𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
− 2𝑦) − 3 (

𝑑𝑦

𝑑𝑥
− 2𝑦) 

I’m going to do a notational trick to illustrate the point: 

= (
𝑑

𝑑𝑥
− 3) (

𝑑𝑦

𝑑𝑥
− 2𝑦) 

Of course, it doesn’t make much sense to say “ 𝑑

𝑑𝑥
− 3”, but by “expanding” this to the form before, it 

hopefully makes sense that what we are effectively doing with the substitution is “factoring” the 
differential equation, ie we use the fact that 

 𝑥2 − 5𝑥 + 6 = (𝑥 − 2)(𝑥 − 3). 

Now, let’s actually solve it. Recall that we got 𝑑𝑢

𝑑𝑥
− 3𝑢 =

𝑑2𝑦

𝑑𝑥2 − 5
𝑑𝑦

𝑑𝑥
+ 6𝑦 so by the original equation we 

have that 𝑑𝑢

𝑑𝑥
− 3𝑢 = 0. The general solution to this is 𝑢 = 𝐴𝑒3𝑥. We now reverse the substitution to get 

𝑑𝑦

𝑑𝑥
− 2𝑦 = 𝐴𝑒3𝑥. We can solve this using the integrating factor method and we will end up getting that 

𝑦𝑒−2𝑥 = ∫ 𝐴𝑒𝑥𝑑𝑥 = 𝐴𝑒𝑥 + 𝐵 

(Note, in general, if it was not 𝑒𝑥 in the integral but something like 𝑒2𝑥 the A may become a constant 
multiple of A, but an arbitrary constant multiplied by something is still an arbitrary constant, so we 
can just write A. It may be a good idea to make a note of this when you use it, but I don’t think this is 
generally necessary for marks on exams.) 

Anyway we have that 𝑦 =  𝐴𝑒3𝑥 + 𝐵𝑒2𝑥. This approach should shed some light on where the form of 
the solutions to these equations comes from. 

Now, we tackle a problem involving repeated roots. We will use the substitution 𝑢 =
𝑑𝑦

𝑑𝑥
+ 4𝑦 to solve 

𝑑2𝑦

𝑑𝑥2 + 8
𝑑𝑦

𝑑𝑥
+ 16𝑦 = 0. We eventually get that 𝑢 = 𝐴𝑒−4𝑥 and therefore 𝑑𝑦

𝑑𝑥
+ 4𝑦 = 𝐴𝑒−4𝑥. Now the 

reason that the repeated roots are difference is rooted in what happens when you now try to do the 

integrating factor method, which gives 𝑑

𝑑𝑥
(𝑦𝑒4𝑥) = 𝐴. What happens is that the exponential terms on 

the right hand side are cancelled. We get that 𝑦𝑒4𝑥 = ∫ 𝐴 𝑑𝑥 = 𝐴𝑥 + 𝐵, giving the general solution as 
𝑦 = (𝐴𝑥 + 𝐵)𝑒−4𝑥. The same thing happens when a term on the right hand side of the differential 
equation is of the same form as a term in the general solution, but hopefully now it feels less like a rule 
to follow but something with a clear reason. 

Now we look at the case of complex roots. The equation 𝑑
2𝑦

𝑑𝑥2
+ 𝑦 = 0 gives 𝑦 = 𝐴𝑒𝑖𝑥 + 𝐵𝑒−𝑖𝑥 for 

reasons the same as above.  We will show that this can be converted into a linear combination of sin 
and cos, and is in fact equivalent to that. We now change our constants to be complex numbers so 
that 



𝑦 = (𝐴 + 𝐵𝑖)𝑒𝑖𝑥 + (𝐶 + 𝐷𝑖)𝑒−𝑖𝑥 where A, B, C, D are arbitrary real numbers. This, by Euler’s identity, is 
equivalent to 𝑦 = (𝐴 + 𝐵𝑖)(cos(𝑥) + 𝑖𝑠𝑖𝑛(𝑥)) + (𝐶 + 𝐷𝑖)(cos(−𝑥) + 𝑖𝑠𝑖𝑛(−𝑥)) 

=  (𝐴 + 𝐵𝑖)(cos(𝑥) + 𝑖𝑠𝑖𝑛(𝑥)) + (𝐶 + 𝐷𝑖)(cos(𝑥) − 𝑖𝑠𝑖𝑛(𝑥)) 

=  (𝐴 + 𝐶 + 𝐵𝑖 + 𝐷𝑖)(cos(𝑥)) + (−𝐵 + 𝐷 + 𝐴𝑖 − 𝐶𝑖)(𝑠𝑖𝑛(𝑥)) 

And we see that these are still arbitrary complex constants. To get 𝐴 + 𝐶 + 𝐵𝑖 + 𝐷𝑖 = 𝑋 + 𝑌𝑖 for 
arbitrary X and Y and −𝐵 + 𝐷 + 𝐴𝑖 − 𝐶𝑖 = 𝑈 + 𝑉𝑖 for arbitrary U and V we can set 

 𝐴 =
𝑋+𝑉

2
, 𝐵 =

𝑌−𝑈

2
, 𝐶 =

𝑋−𝑉

2
, 𝐷 =

𝑌+𝑈

2
 

So the general solution is all and only all of the solutions of the form Asin(x)+Bcos(x) for arbitrary 
complex numbers A and B. The point is we can convert arbitrary coefficients times conjugate complex 
exponentials into arbitrary coefficients times sines and cosines, usually without going through the 
calculation above. 

This is now enough theory to understand everything going on with these differential equations. 

In fact, there is another result, which says that if you find any particular solution to a differential 
equation, which you can use the ideas above to make an educated guess for without blindly following 
rules, then that solution plus the complementary function (the solution to the DE with 0 on the right 
hand side) is the general solution. To see this, if we have a particular solution 𝑦𝑝 and a general solution 
y consider 𝑦 − 𝑦𝑝. If the coefficients in the differential equation are constant, or more generally, 
arbitrary functions of x, so the differential equation is like this 

𝐴
𝑑2𝑦

𝑑𝑥2
+ 𝐵

𝑑𝑦

𝑑𝑥
+ 𝐶𝑦 = 𝑓(𝑥) 

Where A, B, C can be constants or functions of x, but we know that 𝑦𝑝 satisfies the differential 
equation so 

𝐴
𝑑2𝑦𝑝

𝑑𝑥2
+ 𝐵

𝑑𝑦𝑝

𝑑𝑥
+ 𝐶𝑦𝑝 = 𝑓(𝑥) 

But now consider this: 

𝐴
𝑑2(𝑦 − 𝑦𝑝)

𝑑𝑥2
+ 𝐵

𝑑(𝑦 − 𝑦𝑝)

𝑑𝑥
+ 𝐶(𝑦 − 𝑦𝑝) = (𝐴

𝑑2𝑦

𝑑𝑥2
+ 𝐵

𝑑𝑦

𝑑𝑥
+ 𝐶𝑦) − (𝐴

𝑑2𝑦𝑝

𝑑𝑥2
+ 𝐵

𝑑𝑦𝑝

𝑑𝑥
+ 𝐶𝑦𝑝)

= 𝑓(𝑥) − 𝑓(𝑥) = 0 

Therefore 𝑦 − 𝑦𝑝  is the general complementary function, so we can simply do complementary 
function plus particular solution. 

Differential equation series solutions 

Technically, we don’t need to prove anything to be able to find series solutions, so the unproven 
assertion here is the fact that these solutions are valid on an interval. It would be rather silly if they 
were not. We use the fact that we can differentiate power series inside the radius of convergence. 

For the first order case, suppose y’=a(x)y+b(x). This is very easy, as we can find an explicit solution 
using integrating factors that is therefore given only in terms of integrals of products and compositions 



of the exponential, a, and b, which all converge within the common radius of convergence of a(x) and 
b(x) (by the stuff on power series from earlier). 

For the second order case, suppose 𝑦′′ = 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 + 𝑏(𝑥) 

Note: If the equation is not of this form, then any A level question on it just requires you to find what 
the power series solution would be if it was valid in some interval, and no information is relevant as to 
if that is actually the case. 

Where 𝑎1(𝑥) = ∑ 𝑎𝑛
(1)

𝑥𝑛∞
𝑛=0 , 𝑎0(𝑥) = ∑ 𝑎𝑛

(0)
𝑥𝑛∞

𝑛=0 , 𝑏(𝑥) = ∑ 𝑏𝑛𝑥𝑛∞
𝑛=0 . We also assume 𝑦 = ∑ 𝑐𝑛𝑥𝑛∞

𝑛=0 , 
and we will treat the derivative of y as some series which we do not yet know is the true derivative (ie, 
y’:=∑ (𝑛 + 1)(𝑐𝑛+1𝑥𝑛∞

𝑛=0 )). After we prove that the power series for y converges when the actual 
derivative is replaced with this series derivative, we will know that in fact, our power series y satisfies 
the original differential equation with the true derivative. 

We therefore get the following relation by equating the 𝑥𝑛 coefficient of both sides of our differential 
equation. 

(𝑛 + 2)(𝑛 + 1)𝑐𝑛+2 = ∑(𝑛 − 𝑝 + 1)𝑎𝑝
(1)

𝑐𝑛−𝑝+1

𝑛

𝑝=0

+ ∑ 𝑎𝑝
(1)

𝑐𝑛−𝑝 + 𝑏𝑛

𝑛

𝑝=0

 

Now set 𝐴𝑟
(1)

≔ ∑ |𝑎𝑝
(1)

||𝑥|𝑝∞
𝑝=0 , 𝐴𝑟

(0)
≔ ∑ |𝑎𝑝

(0)
||𝑥|𝑝, 𝐵𝑟 ≔ sup

𝑛
|𝐵𝑛||𝑥|𝑛∞

𝑝=0 . Note that since |x|<R, where 

R is the common radius of convergence of 𝑎1(𝑥), 𝑎0(𝑥), 𝑏(𝑥), these are all finite. We will assume that 
|x|<R for the rest of this proof. Set 𝑀𝑛 ≔ max

0≤𝑘≤𝑛
|𝑐𝑘||𝑥|𝑘. Using the triangle inequality on the equation 

above that relates the coefficients, we have that 

(𝑛 + 2)(𝑛 + 1)|𝑐𝑛+2| ≤ ∑(𝑛 − 𝑝 + 1)|𝑎𝑝
(1)

||𝑐𝑛−𝑝+1

𝑛

𝑝=0

| + ∑|𝑎𝑝
(0)

||𝑐𝑛−𝑝| + |𝑏𝑛|

𝑛

𝑝=0

 

Multiplying both sides by |𝑥|𝑛+2 gives 

(𝑛 + 2)(𝑛 + 1)|𝑐𝑛+2||𝑥|𝑛+2 ≤ ∑(𝑛 − 𝑝 + 1)|𝑎𝑝
(1)

||𝑐𝑛−𝑝+1

𝑛

𝑝=0

||𝑥|𝑛+2 + ∑|𝑎𝑝
(0)

||𝑐𝑛−𝑝||𝑥|𝑛+2 + |𝑏𝑛||𝑥|𝑛+2

𝑛

𝑝=0

 

(𝑛 + 2)(𝑛 + 1)|𝑐𝑛+2||𝑥|𝑛+2 ≤ ∑(𝑛 − 𝑝 + 1)|𝑎𝑝
(1)

||𝑐𝑛−𝑝+1

𝑛

𝑝=0

||𝑥|𝑛−𝑝+1|𝑥|𝑝+1 + ∑|𝑎𝑝
(0)

||𝑐𝑛−𝑝||𝑥|𝑛−𝑝|𝑥|𝑝+2 + |𝑥|2𝐵𝑟

𝑛

𝑝=0

 

By the definition of 𝐵𝑟  so this inequality still holds. 

(𝑛 + 2)(𝑛 + 1)|𝑐𝑛+2||𝑥|𝑛+2 ≤ (𝑛 + 1) ∑|𝑎𝑝
(1)

||𝑐𝑛−𝑝+1

𝑛

𝑝=0

||𝑥|𝑛−𝑝+1|𝑥|𝑝+1 + ∑|𝑎𝑝
(0)

||𝑐𝑛−𝑝||𝑥|𝑛−𝑝|𝑥|𝑝+2 + |𝑥|2𝐵𝑟

𝑛

𝑝=0

 

By the definition of M and A, 

(𝑛 + 2)(𝑛 + 1)|𝑐𝑛+2||𝑥|𝑛+2 ≤ (𝑛 + 1)𝑀𝑛+1 ∑|𝑎𝑝
(1)

|

𝑛

𝑝=0

|𝑥|𝑝+1 + 𝑀𝑛 ∑|𝑎𝑝
(0)

||𝑥|𝑝+2 + |𝑥|2𝐵𝑟

𝑛

𝑝=0

 

(𝑛 + 2)(𝑛 + 1)|𝑐𝑛+2||𝑥|𝑛+2 ≤ (𝑛 + 1)𝑀𝑛+1𝐴𝑟
(1)

+ 𝑀𝑛𝐴𝑟
(0)

+ |𝑥|2𝐵𝑟 



|𝑐𝑛+2||𝑥|𝑛+2 ≤
𝑀𝑛+1𝐴𝑟

(1)

𝑛 + 2
+

𝑀𝑛𝐴𝑟
(0)

(𝑛 + 2)(𝑛 + 1)
+

|𝑥|2𝐵𝑟

(𝑛 + 2)(𝑛 + 1)
 

But by the definitions, 𝑀𝑛+2 − 𝑀𝑛+1 ≤ |𝑐𝑛+2||𝑥|𝑛+2 since the amount 𝑀𝑛+2 can increase by from 𝑀𝑛+1 
is no more than the new term in our list of terms we are finding a maximum from, since they are all 
positive. Therefore, 

𝑀𝑛+2 ≤ 𝑀𝑛+1 +
𝑀𝑛+1𝐴𝑟

(1)

𝑛 + 2
+

𝑀𝑛𝐴𝑟
(0)

(𝑛 + 2)(𝑛 + 1)
+

|𝑥|2𝐵𝑟

(𝑛 + 2)(𝑛 + 1)
 

Now set 𝑆𝑛 ≔ 𝑀𝑛 + 𝐶𝑛 where 𝐶𝑛 ≔
|𝑥|2𝐵𝑟

𝐴𝑟
(1)

(𝑛+1)+𝐴𝑟
(0) , so we get 

𝑆𝑛+2 ≤ 𝑆𝑛+1 +
𝑆𝑛+1𝐴𝑟

(1)

𝑛 + 2
+

𝑆𝑛𝐴𝑟
(0)

(𝑛 + 2)(𝑛 + 1)
+

|𝑥|2𝐵𝑟

(𝑛 + 2)(𝑛 + 1)
−

𝐶𝑛𝐴𝑟
(1)

𝑛 + 2
−

𝐶𝑛𝐴𝑟
(0)

(𝑛 + 1)(𝑛 + 2)
 

Therefore we have 

𝑆𝑛+2 ≤ 𝑆𝑛+1 (1 +
𝐴𝑟

(1)

𝑛 + 2
) +

𝑆𝑛𝐴𝑟
(0)

(𝑛 + 2)(𝑛 + 1)
 

Since the three terms on the right of the previous equation cancel. Since M, and therefore S, is non 
decreasing, we get 

𝑆𝑛+2 ≤ 𝑆𝑛+1 (1 +
𝐴𝑟

(1)

𝑛+2
+

𝐴𝑟
(0)

(𝑛+2)(𝑛+1)
) ≤ 𝑆𝑛+1 (1 +

𝐴𝑟
(1)

+𝐴𝑟
(0)

𝑛+2
). 

Call 𝐴𝑟
(1)

+ 𝐴𝑟
(0) a, then 𝑆𝑛+2 ≤ 𝑆1 ∏ (1 +

𝑎

𝑘+2
)𝑛

𝑘=0 , where this symbol is a product like how sigma is a 

sum. Although these inequalities assumed n was “large enough”, we just have to have multiplication 
by a constant to deal with the terms that are not large enough, so it will not affect the radius of 
convergence argument. We can turn this product into a sum by taking logs on both sides to obtain 

ln (𝑆𝑛+2) ≤ ln (𝑆1) + ∑ ln (1 +
𝑎

𝑘 + 2
)

𝑛

𝑘=0

 

Now ln(1 + 𝑥) ≤ 𝑥 for all x>-1 because ln(1 + 𝑥) − 𝑥 has a derivative of 1

1+𝑥
− 1 which is positive when 

x is between -1 and 0 and negative when x is >0. ln(1 + 𝑥) − 𝑥 has a stationary point at (0, 0), and 
because it is increasing before that and decreasing after that, it is never positive. Therefore, 

ln (𝑆𝑛+2) ≤ ln (𝑆1) + ∑
𝑎

𝑘 + 2
<

𝑛

𝑘=0

ln (𝑆1) + ∑
𝑎

𝑘 + 1
= ln (𝑆1) + ∑

𝑎

𝑘

𝑛+1

𝑘=1

𝑛

𝑘=0

 

𝐻𝑛 is commonly used as shorthand for the quantity ∑ 1

𝑟

𝑛
𝑟=1 . We have that  

ln (𝑆𝑛+2) ≤ ln (𝑆1) + 𝑎(𝐻𝑛+1) ≤ ln (𝑆1) + 𝑎(𝐻𝑛) + 𝑎 

𝐻𝑛 ≤ 1 + ln (𝑛). Why? Suppose, for example, n=5. Then 1 + ln (𝑛) is given by this blue area with the 
graph being y=1/x (easily shown by integration) 



Image: Shows an area 
equal to 1+ln(n) for n=5 as an example using the area bounded by y=0, y=1, y=1/x, x=0 and x=5. 

And 𝐻𝑛 is this area which is clearly smaller: 

Image: Shows an area 
equal to H(n) for n=5 as an example by using the area bounded by x=0, x=5, y=0, y=1/ceiling(x), visually 
demonstrating that H(n)<1+ln(n) 

So ln(𝑆𝑛+2) ≤ 𝑐 + 𝑎(𝐻𝑛) ≤ 𝑐 + 𝑎(1 + ln(𝑛)) ≤ 𝑐 + 𝑎(ln(𝑛)) 

Where in the last step I have renamed c: What matters is it’s still a constant. Un-logging both sides 
gives 

𝑆𝑛+2 ≤ 𝑐𝑛𝑎 

Where again, c is still some constant. 

We now have that  
𝑆𝑛 ≤ 𝑐(𝑛 − 2)𝑎 ≤ 𝑐𝑛𝑎 

Why do all this? Because the radius of convergence of our power series is given by 

1

lim sup
𝑛→∞

|𝑐𝑛|1/𝑛
. 

Now using the definitions, this result, and the fact that 𝑆𝑛 ≥ 𝑀𝑛 ≥ 0, we have that 

|𝑐𝑛|1/𝑛 ≤ (
𝑀𝑛

|𝑥|𝑛
)

1
𝑛

≤ (
𝑆𝑛

|𝑥|𝑛
)

1
𝑛

≤ (
𝑐𝑛𝑎

|𝑥|𝑛
)

1
𝑛

=
𝑐1/𝑛𝑛𝑎/𝑛

|𝑥|
 

So, since 𝑐1/𝑛𝑛𝑎/𝑛 → 1 (You can take logs and use L’hopital, proved in the video, to check this), the lim 

sup of this is no larger than 1

|𝑥|
. Since x could be anything less than R (where R is the common radius of 

convergence that we’ve assumed |x| is less than the entire time), the lim sup is no larger than 1

𝑅
, so the 

reciprocal is no smaller than R, so done (at last). The series solution does in fact converge within the 
common radius of convergence of the coefficients of a 2nd order linear differential equation. 



 Distance between point and plane formula 

This is because if a plane is defined by ax+by+cz+d=0 then we know that any point’s distance from the 
plane is given by  the length of the line segment normal to the plane, from the plane to the point. We 
can also rewrite the equation of the plane as (a,b,c).(x,y,z)=-d. We know that the normal has direction 
(a, b, c) since for any points P, Q on the plane, (P-Q).(a,b,c)=-d-(-d)=0 and also it is visually obvious 
that P-x is perpendicular to the normal of the plane. So the distance from any point R to the plane is 
the length of the component R-P in the direction of n, where n is normal to the plane and P is a point 

on the plane. This means it is given by |𝑛.(𝑅−𝑃)|

|𝑛|
 but n.P is -d so it is given by |𝑛.𝑅−𝑑|

|𝑛|
, and the result 

follows. 

Matrix transpose relation 

We want to show that (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 for matrices A and B. This is true because the row i, column j 
element of AB is given by doing (row i of A).(column j of B) and so the row j, column i element of (𝐴𝐵)𝑇 
is given by that same formula. The row j, column i element of the right hand side of the equation above 
is equal to (row j of 𝐵𝑇).(column i of 𝐴𝑇) which by the definition of the transpose is indeed equal to 
(row i of A).(column j of B). The matrices are equal element-wise so they are equal. 

Cross product properties 

We want to show that: 

- AxB is perpendicular to A and B 
- AxB=-(BxA) (anticommutitivity) 
- Ax(B+C)=AxB+AxC (distributivity) 
- |AxB|=area of parallelogram spanned by A and B 

It will be helpful to think of the cross product as the determinant of the following matrix, since if you 
actually compute this determinant you can see that it is equal to the formula for the cross product 
that we assume is true and want to prove these properties from. (Note: i, j, k are the standard unit 
vectors, and the subscript denotes the coordinate) 

𝐴𝑥𝐵 = 𝑑𝑒𝑡 [

𝑖 𝐴𝑥 𝐵𝑥

𝑗 𝐴𝑦 𝐵𝑦

𝑘 𝐴𝑧 𝐵𝑧

] 

This proves AxB=-(BxA) as swapping two columns changes the sign of the determinant, and that 
Ax(B+C)=AxB+AxC since the determinants are linear in columns as shown earlier. Now we can 
consider the determinant of the following matrix: 

[

𝐴𝑥 𝐴𝑥 𝐵𝑥

𝐴𝑦 𝐴𝑦 𝐵𝑦

𝐴𝑧 𝐴𝑧 𝐵𝑧

] 

Clearly it is zero because it has two columns the same, but another way to see this is to consider 
expanding it out by the first column, ie the determinant is 

 𝐴𝑥(𝐴𝑦𝐵𝑧 − 𝐵𝑦𝐴𝑧) + 𝐴𝑦(𝐵𝑥𝐴𝑧 − 𝐴𝑥𝐵𝑧) + 𝐴𝑧(𝐴𝑥𝐵𝑦 − 𝐵𝑥𝐴𝑦) 

But notice, this is actually equal to A.(AxB), and so we have that A.(AxB)=0. Applying the same 
argument to B gives that AxB is perpendicular to both A and B. 



To prove the thing about area, we notice that the sum of the squares of the components of the cross 
product is the square of the cross product by pythagoras, and that value can also be shown (by a 
direct computation) to be given by this formula: 

𝑑𝑒𝑡 [

𝐴𝑦𝐵𝑧 − 𝐵𝑦𝐴𝑧 𝐴𝑥 𝐵𝑥

𝐵𝑥𝐴𝑧 − 𝐴𝑥𝐵𝑧 𝐴𝑦 𝐵𝑦

𝐵𝑥𝐴𝑧 − 𝐴𝑥𝐵𝑧 𝐴𝑧 𝐵𝑧

] 

So now picture this geometrically: We have a vector AxB perpendicular to vectors A and B and we 
want to find the length of AxB. We know that the volume of the parallelopiped spanned by A, B and 
AxB (By the volume property of the determinant proven earlier and the determinant of the matrix 
above) equals the square of the magnitude of the cross product, but the volume of this parallelopiped 
also equals the magnitude of AxB times the area of the parallelogram spanned by A and B. Cancelling 
a factor of |AxB| on both sides gives the desired result. 

Why decomposition by eigenvectors works: 

The reason 𝐴 = 𝑃𝐷𝑃−1 is essentially that (𝑃𝐷𝑃−1)𝑣 takes v, and if we take it to be separated into 
eigenvector components, it first moves v such that those are its real components, scales everything 
by the eigenvalue factors, then moves it back. 

Eigenvectors with different eigenvalues are actually linearly independent so the matrix P in the 
decomposition is actually invertible 

Proof: Suppose we have r different eigenvalues and we pick r eigenvectors, one for each eigenvalue. 
We want to show that they are linearly independent, ie none is a linear combination (sum of constant 
multiples) of the others. 

Suppose that they are linearly independent, meaning there exists constants 𝑎1, 𝑎2, … 𝑎𝑟 not all 0 such 
that 𝑎1𝑣1 + 𝑎2𝑣2 + ⋯ + 𝑎𝑟𝑣𝑟 = 0 where v is our eigenvectors. 

Take the p that is the least p such that p of the a’s can be different from 0 with this satisfied. 

So now suppose 𝑎1𝑣1 + 𝑎2𝑣2 + ⋯ + 𝑎𝑝𝑣𝑝 = 0 with all coefficients non-zero. Then 

(𝐴 − 𝜆1𝐼)(𝑎1𝑣1 + 𝑎2𝑣2 + ⋯ + 𝑎𝑝𝑣𝑝) = 0 by assumption, but we know that (𝐴 − 𝜆1𝐼)(𝑎1𝑣1) = 0 by 

definition, so (𝐴 − 𝜆1𝐼)(𝑎2𝑣2 + 𝑎3𝑣3 + ⋯ + 𝑎𝑝𝑣𝑝) = 0. Now this means that 

 0 = (𝐴 − 𝜆1𝐼)(𝑎2𝑣2 + 𝑎3𝑣3 + ⋯ + 𝑎𝑝𝑣𝑝) 

= 𝐴(𝑎2𝑣2 + 𝑎3𝑣3 + ⋯ + 𝑎𝑝𝑣𝑝) − 𝜆1(𝑎2𝑣2 + 𝑎3𝑣3 + ⋯ + 𝑎𝑝𝑣𝑝) 

Therefore, since these are eigenvectors, 

(𝑎2(𝜆1 − 𝜆2)𝑣2 + 𝑎3(𝜆1 − 𝜆3)𝑣3 + ⋯ + 𝑎𝑝(𝜆1 − 𝜆𝑝)𝑣𝑝) = 0 

This contradicts that p is the least number of non zero coefficients we can have. So done. 

Symmetric matrices decompose into 𝑷𝑻𝑨𝑷 = 𝑫 and this is the same as 𝑷−𝟏𝑨𝑷 = 𝑫  

This is called the spectral theorem. It is sufficient to show that the eigenvectors are perpendicular, as 
then we see that if the eigenvalue matrix is A then 𝐴𝑇𝐴 = 𝐴𝐴𝑇 = 𝐼 by a dot product argument, so the 
transpose of A is the inverse of A. Here we assume that the symmetric matrix has real values, 
otherwise the claim about the transpose being the inverse, the more general result that works for 



complex numbers is about Hermitian matrices, where if you take the complex conjugate of the 
transpose of A you get the inverse of A, and for real numbers taking the complex conjugate simply 
does nothing, and the proof for that result goes exactly like the proof shown below. 

If S is our symmetric matrix and v is an eigenvector with eigenvalue λ then by the definition of 
eigenvectors we have that Sv= λv.  

So, suppose we have eigenvalues λ and µ (which are not equal to eachother, this is another 
assumption used in the mathematical statement we are proving) with eigenvectors v and u 
respectively, then we have 

𝑆𝑣 = λv  (1) and 𝑆𝑢 = µu  (2). We can multiply both sides of (1) on the left by the row vector 𝑢𝑇  and 
both sides of (2) on the left by the row vector 𝑣𝑇. This will give 𝑢𝑇𝑆𝑣 = λ𝑢𝑇v and 𝑣𝑇𝑆𝑢 = µ𝑣𝑇u, where 
the constants can be moved out to the front. Now we will take the transpose of both sides of this last 
equation so we get (𝑣𝑇𝑆𝑢)𝑇 = µ(𝑣𝑇𝑢)𝑇 and then use the relation about matrix transposes from earlier 
to simplify this to 𝑢𝑇𝑆𝑇𝑣 = µ𝑢𝑇v. It is here that we use the assumption that S is symmetric, as by 
definition we have that 𝑆 = 𝑆𝑇  so 𝑢𝑇𝑆𝑣 = µ𝑢𝑇v. 

Since we have 𝑢𝑇𝑆𝑣 = λ𝑢𝑇v from earlier as well, it means µ𝑢𝑇v = λ𝑢𝑇v as if they are both equal to 
𝑢𝑇𝑆𝑣 they must be equal to eachother. Therefore, we have 2 options: Either λ =  µ (so the eigenvalues 
would not be distinct as per our assumption), or 𝑢𝑇v = 0. Because of how matrix multiplication works, 
finding 𝑢𝑇v is actually the same as taking the dot product u.v, so we are done and we have proven the 
perpendicularity as required. 

Cayley hamilton theorem 

We define Adj(M) as the transpose of the cofactor matrix. We have det(𝑀) 𝑀−1 = 𝐴𝑑𝑗(𝑀) if M is 
invertible, and we always have that det(𝑀) 𝐼 = 𝑀𝐴𝑑𝑗(𝑀). 

We define B=Adj(tI-A) where A is an nxn matrix with a characteristic equation in t that is det(tI-A)=0. 
Since the elements of an adjugate matrix are built by taking the original matrix and deleting a row and 
column and finding the determinant (which in the case of tI-A will be polynomials in t with a power of t 
not exceeding n-1), we know that the elements of B must be polynomials in t of degree up to n-1, so we 
can write B as 

∑ 𝑡𝑘𝐵𝑘
𝑛−1
𝑘=0  for matrices 𝐵𝑘 with coefficients not depending on t. 

We know that 𝑑𝑒𝑡(𝑡𝐼 − 𝐴)𝐼 = (𝑡𝐼 − 𝐴)𝐴𝑑𝑗(𝑡𝐼 − 𝐴) so det(𝑡𝐼 − 𝐴) 𝐼 = (𝑡𝐼 − 𝐴) ∑ 𝑡𝑘𝐵𝑘
𝑛−1
𝑘=0  

On the left hand side, we have 𝑡𝑛𝐼 + 𝑐𝑛−1𝑡𝑛−1𝐼 + 𝑐𝑛−2𝑡𝑛−2𝐼 + ⋯ + 𝑐1𝑡𝐼 + 𝑐0𝐼 where the c’s are the 
coefficients of the characteristic polynomial of A and on the right hand side we have, by expanding, 

𝑡𝑛𝐵𝑛−1 + 𝑡𝑛−1(𝐵𝑛−2 − 𝐴𝐵𝑛−1) + 𝑡𝑛−2(𝐵𝑛−3 − 𝐴𝐵𝑛−2) + ⋯ + 𝑡(𝐵0 − 𝐴𝐵1) − 𝐴𝐵0. 

= 𝑡𝑛𝐵𝑛−1 + ∑(𝑡𝑘(𝐵𝑘−1 − 𝐴𝐵𝑘))

𝑛−1

𝑘=1

− 𝐴𝐵0 

Now we equate the coefficients of powers of t from our two equations. We get that 

𝐼 = 𝐵𝑛−1 

And that 



𝑐𝑘𝐼 = 𝐵𝑘−1 − 𝐴𝐵𝑘 

For k from 1 to n-1, and 

𝑐0𝐼 = −𝐴𝐵0 

Now by multiplying both sides of each equation by 𝐴𝑛, 𝐴𝑘 and nothing respectively we get 

𝐴𝑛 = 𝐴𝑛𝐵𝑛−1 

𝑐𝑘𝐴𝑘 = 𝐴𝑘𝐵𝑘−1 − 𝐴𝑘+1𝐵𝑘 

𝑐0𝐼 = −𝐴𝐵0 

So we have that 

𝐴𝑛 + 𝑐𝑛−1𝐴𝑛−1 + ⋯ + 𝑐1𝐴1 + 𝑐0𝐼 = 

𝐴𝑛𝐵𝑛−1 + 𝐴𝑛−1𝐵𝑛−2 − 𝐴𝑛𝐵𝑛−1 + 𝐴𝑛−2𝐵𝑛−3 − 𝐴𝑛−1𝐵𝑛−2 + ⋯ + 𝐴𝐵0 − 𝐴2𝐵1 − 𝐴𝐵0 

The latter expression is 0 because clearly every negative term cancels every positive term, and this is 
equal to the characteristic equation of A of A, where A is an arbitrary matrix. This completes the proof. 

L’hopital’s rule 

I have a video on this which shows a visual argument for the 0/0 case and then at the end shows 
images of both the technical justification for that case and the proof of the other cases from that case. 
Note that the rule assumes that the fraction with the derivatives exists – The original limit may exist 
but that one may not. 

A tricky integral problem 

We know and can derive using partial fractions a formula that says that ∫
1

𝑥2−𝑎2 𝑑𝑥 =
1

2𝑎
ln (

𝑥−𝑎

𝑥+𝑎
) + 𝑐. 

So, putting in a=i we know that ∫
1

𝑥2+1
𝑑𝑥 =

1

2𝑖
ln (

𝑥−𝑖

𝑥+𝑖
) + 𝑐. But this integral is also equal to arctan(x)+c. 

So we have two different answers. However, it turns out these are secretly equivalent. Another 
example of this is how the integral of 1/2x gives both ln(x)/2+c and ln(2x)/2+c. The resolution to this 
second example is that the two answers actually differ by ln(2)/2 by logarithm properties, which is a 

constant. We can do the same for the first example: Since |𝑥−𝑖

𝑥+𝑖
| =

𝑥2+1

𝑥2+1
= 1 if x is real, 

ln (
𝑥−𝑖

𝑥+𝑖
) = i ∗ arg (

𝑥−𝑖

𝑥+𝑖
) = i ∗ arg (

𝑖𝑥+1

𝑖𝑥−1
) = i ∗ arg(𝑖𝑥 + 1) − i ∗ arg(𝑖𝑥 − 1) 

= i ∗ arctan(𝑥) − i ∗ arctan(−x) = 2i arctan(𝑥) 

So 1

2𝑖
ln (

𝑥−𝑖

𝑥+𝑖
) = arctan (𝑥). 

So, two different answers could be secretly equivalent: This often happens when trig identities 
involved. Note that if |x|=1 then x can be written as 𝑒𝑖𝑎𝑟𝑔(𝑥), and arg(ix+1)=arctan(x) because this can 
be shown geometrically. 

Conic section properties 

They are called conic sections because you get them from slicing a cone, but typically at A level this is 
not proven. If a cone has equation 𝑐1𝑧2 = 𝑥2 + 𝑦2 and a plane has equation 𝑥 + 𝑐2𝑧 = 1 (where we 
have rotated and scaled the figure so that the plane intersection with z=0 closest to the origin has 



been standardized to the point (1,0) in the xy plane). Then we can make a substitution (specifically we 
rearrange the second equation for z and substitute that into the first equation): 𝐴(1 − 𝑥)2 = 𝑥2 + 𝑦2 
where A is some constant. If a=1 this cancels to give 𝑦2 = 1 − 2𝑥 which is a parabola. This means a 
parabola is what you would see if you were to look at the plane from the z axis (ie, looking down from a 
point like (0, 0, 10000)). If you were to look at the plane from its perpendicular axis, it would stretch 
out, below is an illustration of what I mean, we see that if we ignore perspective issues and act like we 
are simply seeing a projection, the plane looks like a contracted version of itself when viewed from an 
axis not perpendicular to it. 

Images: Shows a plane viewed 
from above and from the side, with its gridlines, so you can see my point. 

Stretching a parabola still gives a parabola, if the x or y is scaled it’s still a parabola. 

Similarly, if A<1, we get an ellipse equation, if A>1 we get a hyperbola equation. In both cases the 
stretching argument still applies. Therefore we know that all three conic sections are gotten by slicing 
a cone. 

Also, you can consider a parabola to be like a “limit” of an ellipse as it gets more and more stretched 
out, by slowly tilting the plane intersecting the cone so A is 0.99, 0.999, 0.9999, etc 

We can also easily verify, using trig identities, that the parametric equations for an ellipse, parabola, or 
hyperbola satisfy the cartesian equations for them. The only thing we need to be careful of is that if we 
use (Acosh(t), Bsinh(t)) as the parametric equation for a hyperbola, then cosh can only take positive 
values if t is real, so we should either allow for complex t or use tan and sec. 

Now we will prove that in an ellipse and hyperbola, the sum and differences of the distances of any 
point on the curve from the foci respectively is constant, this is the defining feature of the foci. For an 
ellipse we start by assuming the sum of the distances from the foci at (-c, 0) and (c, 0) is constant and 
equal to 2a with a>c then we prove that the equation we get is the equation for an ellipse. 



 

 

Note: the steps where we square both sides can be reversed since we always assume both sides to be 
positive. Therefore we have equivalence between the equation for the ellipse in “pythagorean” form 
and focus distance form. 

In a hyperbola we do nearly the identical work. You should be able to figure it out by following the 
same steps as in the ellipse proof, but here it is anyway. 

 

 

From here, the steps are the same, except now the equation we get at the end is a hyperbola equation 
because c>a. 

In a parabola 𝑦2 = 4𝑎𝑥 the distance fron the focus (a,0) to a point on the parabola is given by 

√(𝑥 − 𝑎)2 + 𝑦2, and 𝑥 =
𝑦2

4𝑎
 so we have √(

𝑦2

4𝑎
− 𝑎)2 + 𝑦2. We can simplify this to √ 𝑦4

16𝑎2
−

𝑦2

2
+ 𝑎2 + 𝑦2 

which is √ 𝑦4

16𝑎2 +
𝑦2

2
+ 𝑎2 which is 𝑎 +

𝑦2

4𝑎
 which is a+x which is the distance from the relevant point on 

the parabola to the directrix. 

Now, we prove properties of eccentricity. Suppose that the eccentricity of an ellipse or hyperbola is 

the value of e such that 𝑥2 +
𝑦2

1−𝑒2 = 1, then we will prove that e is both the ratio between the distance 

between the foci and the length of the long diameter of the ellipse or the distance between the parts 



of the hyperbola, and the ratio of the distance of a focus and the corresponding directrix. For the first 

one, note that if we consider e to be 𝑐

𝑎
 in the proofs above the final equations can be simplified to be 

𝑥2 +
𝑦2

1−𝑒2 = 1 and also that by picking the point on the curve in question to be a point on the x axis it 

becomes clear that 2a, our constant distance is indeed twice the the length of the long diameter of 
the ellipse or the distance between the parts of the hyperbola. 

For the other property, if we have a point on the curve, we let 𝑑1 be the distance from that point to the 
focus and 𝑑2 be the distance from that point to the corresponding directrix. Note also that even if the 

denominator of x is not 1 both properties hold by scaling. We have that 𝑑1 = √(𝑥 − 𝑒)2 + 𝑦2 by 

pythagoras and that 𝑑2 = 𝑥 −
1

𝑒
. Substituting in 𝑦2 = (1 − 𝑥2)(1 − 𝑒2) which comes from rearranging 

the equation for the curve we get that 𝑑1 = √(𝑥 − 𝑒)2 + (1 − 𝑥2)(1 − 𝑒2) =

√𝑥2 − 2𝑥𝑒 + 𝑒2 + 1 − 𝑥2 − 𝑒2 + 𝑥2𝑒2 = √−2𝑥𝑒 + 1 + 𝑥2𝑒2 = 𝑥𝑒 − 1 = 𝑒𝑑2 as required. 

Recurrence relations 

We will not really do any work here because the parts of this that are used as a black box in some 
specifications can be proven using the same ideas as the differential equations from earlier. Perhaps 
this is unsurprising since the methods are very similar for solving both types of problems. If you use 
the analagous substitution for the second order case, then you will get the right complementary 
function, and the same result that says the thing about the general solution being complementary 
function plus particular solution also applies and can be proven the same way. It remains to verify the 
results in the tables of particular solutions given in some textbooks. However, it is easy to verify that 
you will get a solvable equation to solve for the constants as a result of plugging them in, and anyway 
using educated guesses and substitutions is more proper than memorizing tables. 


