Matrix multiplication is associative
Let A be n*m, B be m*k, and C be k*l.

Then (AB);; denotes the entry in AB in row i and column j. By matrix multiplication this is Y.L ; A;-B;.;.
Also, ((AB)C)U, = Y¥_,(AB);,C,;. Using the sum for (AB);, we get ((AB)C)U =Yk _1(AB);Cyj =
Yk 1 ¥M, AisBg, Cyj. If you do the same for (A(BC))U you will get the same sum. I’'m too lazy to
actually do it but I think you probably can. If the elements all agree the matrices are equal.

Matrices satisfy (A+B)C=AC+BC

This is kind of obvious since matrix addition just sums the elements, then it is immediate that:

m m m
D 4G+ D Binlry= ) (A+B)yCy,
r=1 r=1 r=1

Again, the elements agree so the matrices are equal.
Matrix determinant is volume

This has been proven in a video using some visual arguments about vectors. Note that in this proof we
show that the sign of the determinant changes when we swap the columns. The fact that whether we
have an even or odd number of swaps is well defined (ie for some matrix you can tell which situation
we are in) is something which we will prove in Level 7 since the proof is not hard but itis not needed
for any of this. For the three dimensional case you can think of whether the transformed axes are left
or right handed (right handed meaning if you take the x-y plane to be parallel to the page with the
positive y direction less than 180 degrees counterclockwise from the positive x direction then the z
axis will go out of the page).

Matrix inverse formula works

This has been proven in the same video as the determinant proof video using the determinant formula
and the fact that itis volume.

Polar coordinate integration



Image: Shows the area of an arc of a polar
curve approximated by thin right angled triangles

We see from the diagram above that we are summing the area of right angled triangles which have a
base of r, a height of rsin(d8) which is therefore approximately rd0 and approaches rd8 as d8 goes to 0.

So the area of these triangles is %rzdﬁ. Summing these areas and taking a limit as d6 goes to 0 is kind

of what an integral is, so we get the formula | %Tzdﬂ.

Some power series properties
Definition: Least upper bound / Supremum

This essentially means the smallest number greater than or equal to a set of numbers. This always
exists, but it is not necessarily always attained, for example the sequence 0.9, 0.99, 0.999 has a least
upper bound of 1 but 1 is not attained in this sequence. Itis obvious that any bounded set has a least
upper bound, so therefore any increasing sequence which is bounded above converges as it
converges to its least upper bound, similarly for decreasing sequences bounded below.

The infimum is the opposite, it is the highest lower bound.

If | have a sequence, then the lim inf of the sequence is defined as the limit of the infima of the
sequence as | remove more terms at the start. Take some time to think about this definition and the
following corrolaries if you need to, since I’m not sure how confusing this will be for someone who’s
never done analysis.

As an example, if my sequenceis 0, 2, 0.9, 2, 0.99, 2, 0.999, etc then if | remove terms from the start of
this sequence the infima will approach 1 so the lim inf is 1. The limit of the sequence does not exist
since the terms do not eventually get as close as you want a value. The lim sup, which is the opposite
of the lim inf (Essentially the limit of suprema) of this sequence is 2. Since the infimum of a sequence
does not decrease when you remove terms, the lim inf can be thought of the supremum of the infima
of the tails of the sequence (ie the sequences you get after removing terms). In more precise terms,



lim infa, = sup Iglf a, In fact, the lim inf of a sequence always exists, it just might be infinity if the
n—-oo n =n

sequence is unbounded, since the infima of the tails are increasing, and if they are increasing and
bounded they will converge to something (as if something is bounded it has a least upper bound),
otherwise they will go to infinity.

We will now prove some properties of power series. Specifically, that all power series have a unique
radius of convergence R with the property that if |x|<R then the series converges absolutely, and if
[x]>R then the series diverges. The proof of this comes from the cambridge tripos notes for analysis |

Lemma. Suppose that > a,z" converges and |w| < |z|, then }_ a,w"™ converges
{absolutely).

Proof. We know that

u |

lapw™| = |anz"| - |—

Since Za“z“ converges, the terms a,z" are bounded. So pick C' such that
la, 2" < C
for every n. Then

0< Z la,w™| < Z C

n=0 n=»(}

w
z

which converges (geometric series). So by the comparison test, ¥ a,,w" converges
absolutely. 4

It follows that if 3 a,2™ does not converge and |w| > |z|, then ¥ apw™ does
not converge.

Now let R = sup{|z|: }_ a,z™ converges } (R may be infinite). If |z| < R,
then we can find 29 with |z0| € (|2|, R] such that >~ anz{ converges. So by
lemma above, 3 a,z" converges. If |z| > K. then }_ a, 2" diverges by definition
of R.

Detfinition (Radius of convergence). The radius of convergence of a power series

Y apz"is
=sup1 |z|: anz" converges ¢ .
I? mn o

1

lim sup %/]az|

We will now prove thatin fact, R = . Here is a proof of that, also from cambridge Analysis I:

Proof. Suppose |z| < 1/limsup {/|a,|. Then |z|limsup {/|a,| < 1. Therefore
there exists N and £ > 0 such that

sup |z| V/]|an| <1 —¢

n>N

by the definition of lim sup. Therefore
la,z"| < (1—¢&)"

for every n > N, which implies (by comparison with geometric series) that
Z anz" converges absolutely.

On the other hand, if |z|limsup {/|a,| > 1, it follows that |z| }/|a,| = 1 for
infinitely many n. Therefore |a,2"| > 1 for infinitely many n. So > a,z" does
not converge. O

These results will be used when we prove a result for when series solutions for differential equations
are valid.



We will now prove that sums and products of power series converge inside the common radius of
convergence of the power series in question, and that compositions of power series converge on a
slightly different radius. We write x as if this were not centered at 0 it would just be x — x,.

For sums: We know from earlier that ), a,,x™ and}, b,,x™are absolutely convergent if |x|<R. Therefore
Ylan + by|x™ <Y |ay|x™ + Y |by|x™ < Yla,x™| + X|b,x™| < oo (by the triangle inequality, recall the
idea that |a+b|<|a|+|b]).

For products: We note that if we have two power series A and B, then the x™ term of AB has
contributions from the x° term of A with the x™ term of B, the x* term of A with the x™~! term of B, the
x? term of A with the x™ 2 term of B, and so on. Therefore, the coefficient of the x™ term can be given
by Y k=0 Ak Cn_k- SO AB can be written as Yo o(X =0 AkCn-k)X". We need absolute convergence to
justify rearranging the terms like this, but luckily we have that, since if |x|<R then

Cla,x™)Q|b,x™|) < oo since each sum converges in the common radius of convergence of the
power series a and b.

For compositions: Suppose we want to find a power series for f(g(x)) where fis ), a,x™, gis ), b,,x™. Set
the radius of convergence of f and g to be Ry and R, respectively. Suppose that g(xy) = 0, because if
g(xy) = k then we can rename f to f(x-k) then g will still be 0 at x,. Let g*(x) = . |b,|x™. Then we have
a closed disc where |g+|<Rf (possible since g*(0) = 0 and power series are continuous inside their
radius of convergence since they are differentiable so g*can be as small as we want if we make the
disc small enough, also making sure the disc does not have a radius larger than R;). Then inside this
disc, the sum Y, a,,g(x)™ is absolutely convergent, since the absolute values are given by

Y lanlg*(xD™ < Xlan|Rf < . Therefore, we can safely rearrange the terms as we like, so composite
power series converge inside a finite radius. In the case where fis the exponential function, the power
series in question converges in the radius of convergence of g, because g is always within Ry so we
just need the other condition that x is within R;. We will use this fact for the differential equations
series solutions proof as well.

Integrating factor well-defined-ness

A constant of integration added to the integrating factor can be moved to the constant out front of the
exponential so it does not matter which antiderivative we use in this context.

Second order differential equations
Technically this is Second order ordinary linear differential equations with constant coefficients.

To explain why the solutions are of the form they are and why those are the general solutions, | will
start by imitating how | think textbooks should introduce it. Currently it feels like you are just following
a bunch of rules for the general solution, such as adding x factors for repeated terms, but now | will
show where these rules come from. Pretend like you’ve only seen how to solve first order differential
equations using A level techniques, and that you are given the following problem:

2
Use the substitution u = Z—z — 2y to solve the differential equation 3732/ -5 Z—i + 6y = 0.

2
Lets see how we might do this. We observe that Z—u =3y _ 2 Z—i by differentiating both sides of the

x dx?

. - L d?
given substitution, which is a natural step as we need to somehow get a d—x);term. Now we can try



2
subtracting 3u so that that we have the right Z—i coefficient of -5, specifically we get z—z —3u = % -

5 % + 6y. How lucky indeed, we get the original differential equation! To see what is going on,

consider this:

d (dy dy
—a(a‘ZY)‘3(a‘ZY>

I’m going to do a notational trick to illustrate the point:

- (3@ )
~ \dx dx Y
Of course, it doesn’t make much sense to say “% — 3”, but by “expanding” this to the form before, it

hopefully makes sense that what we are effectively doing with the substitution is “factoring” the
differential equation, ie we use the fact that

x?2—5x+6=(x—2)(x—3).

a’y

dy .. .
oz 5 =T 6y so by the original equation we

Now, let’s actually solve it. Recall that we got Z—z —3u =

d . . N
have that d—z — 3u = 0. The general solution to this is u = Ae3*. We now reverse the substitution to get

a4
dx
ye ?* = [ Ae*dx = Ae* + B

— 2y = Ae3*. We can solve this using the integrating factor method and we will end up getting that

(Note, in general, if it was not e* in the integral but something like e?* the A may become a constant
multiple of A, but an arbitrary constant multiplied by something is still an arbitrary constant, so we
can just write A. It may be a good idea to make a note of this when you use it, but | don’t think this is
generally necessary for marks on exams.)

Anyway we have that y = Ae3* + Be?*. This approach should shed some light on where the form of
the solutions to these equations comes from.

. . . N d
Now, we tackle a problem involving repeated roots. We will use the substitution u = ﬁ + 4y to solve

2
2732’ + 83—3; + 16y = 0. We eventually get that u = Ae~** and therefore Z—z + 4y = Ae~**. Now the
reason that the repeated roots are difference is rooted in what happens when you now try to do the
integrating factor method, which gives % (ye*®) = A. What happens is that the exponential terms on

the right hand side are cancelled. We get that ye** = fA dx = Ax + B, giving the general solution as
y = (Ax + B)e™**. The same thing happens when a term on the right hand side of the differential
equation is of the same form as a term in the general solution, but hopefully now it feels less like a rule
to follow but something with a clear reason.

. d? . ; i
Now we look at the case of complex roots. The equation d_x}Z] +y =0givesy = Ae"™ + Be ™ for
reasons the same as above. We will show that this can be converted into a linear combination of sin

and cos, and is in fact equivalent to that. We now change our constants to be complex numbers so
that



y = (A + Bi)e™ + (C + Di)e~™ where A, B, C, D are arbitrary real numbers. This, by Euler’s identity, is
equivalenttoy = (4 + Bi)(cos(x) + isin(x)) + (C + Di)(cos(—x) + isin(—x))

= (A+ Bi)(cos(x) + isin(x)) + (C + Di)(cos(x) — isin(x))
= (A+ C+ Bi+ Di)(cos(x)) + (=B + D + Ai — Ci)(sin(x))

And we see that these are still arbitrary complex constants. Toget A+ C + Bi + Di = X + Yi for
arbitrary Xand Yand —B + D + Ai — Ci = U + Vi for arbitrary U and V we can set

So the general solution is all and only all of the solutions of the form Asin(x)+Bcos(x) for arbitrary
complex numbers A and B. The point is we can convert arbitrary coefficients times conjugate complex
exponentials into arbitrary coefficients times sines and cosines, usually without going through the
calculation above.

This is now enough theory to understand everything going on with these differential equations.

In fact, there is another result, which says that if you find any particular solution to a differential
equation, which you can use the ideas above to make an educated guess for without blindly following
rules, then that solution plus the complementary function (the solution to the DE with 0 on the right
hand side) is the general solution. To see this, if we have a particular solution y, and a general solution
y consider y — . If the coefficients in the differential equation are constant, or more generally,
arbitrary functions of x, so the differential equation is like this

d’y dy

A—+B— =
2 TB =1

Where A, B, C can be constants or functions of x, but we know that Yp satisfies the differential

equation so

d?y, dy,
AP L plP —
T2 + I + Cy, = f(X)

But now consider this:

d2(y — d(y - d? d d? d
A (y yp)+B (y yp)+C(y—yp)=<A—y+B_y+Cy>_<A yp+B&+CYp>

dx? dx dx? dx dx? dx
=fl)—f(x)=0

Therefore y — y, is the general complementary function, so we can simply do complementary
function plus particular solution.

Differential equation series solutions

Technically, we don’t need to prove anything to be able to find series solutions, so the unproven
assertion here is the fact that these solutions are valid on an interval. It would be rather silly if they
were not. We use the fact that we can differentiate power series inside the radius of convergence.

For the first order case, suppose y’=a(x)y+b(x). This is very easy, as we can find an explicit solution
using integrating factors that is therefore given only in terms of integrals of products and compositions



of the exponential, a, and b, which all converge within the common radius of convergence of a(x) and
b(x) (by the stuff on power series from earlier).

For the second order case, suppose y"' = a;(x)y’ + ao(x)y + b(x)

Note: If the equation is not of this form, then any A level question on it just requires you to find what
the power series solution would be if it was valid in some interval, and no information is relevant as to
if that is actually the case.

Where a;(x) = Yoo a,(ll)x” ,ao(X) = Yoo a;O)x” ,b(x) = Yoo by x™. We also assume y = Yo CpXx™,
and we will treat the derivative of y as some series which we do not yet know is the true derivative (ie,
y =Y o(n + 1)(cy1x™)). After we prove that the power series for y converges when the actual
derivative is replaced with this series derivative, we will know that in fact, our power series y satisfies
the original differential equation with the true derivative.

We therefore get the following relation by equating the x™ coefficient of both sides of our differential
equation.

n n
1 1
m+2)(n+ Dcyyy = Z(n -p+ 1)a§, )cn_p+1 + z az(, )cn_p + b,
p=0 p=0

Now set AS) = Yp=o |a1(,1)||x|p,A§0) = Yp=o |a§,0)||x|p,Br := sup|B,||x|™. Note that since |x|<R, where
n

R is the common radius of convergence of a,(x), ay(x), b(x), these are all finite. We will assume that
|x|<R for the rest of this proof. Set M,, := 0mkax |ck||x|k. Using the triangle inequality on the equation
<ksn

above that relates the coefficients, we have that

n n
(n+ 20+ Dlensal < ) 1= p+ D]aienpar |+ ) [a8”]icnspl + 1Bl
p=0 p=0
Multiplying both sides by |x|™*2 gives

n n
1 0
(4 2D+ Dlcnalll™ < > (1= p + D] |lenpoa 112 + Y [al?|lenpl1x1™+2 + by x|+
p=0 p=0

n n
(+ 2@+ Dlenal il < Y (= p+ D[alen o [P P+ [0l 2P L]P+ + 218,
p=0 p=0
By the definition of B, so this inequality still holds.
n n
(n+ 2)( + Dl 6™ < 0+ 1) Y |a[lenpn I+ |l Iy [P 2P + [x2B,

p=0 p=0

By the definition of M and A,

n n
(4 20+ Dlnalll™? < 1+ DMy ) [as] 12124+ My Y [l |[x]P*2 + B,
p=0 p=0

(n+2)(n + DlcpslX]™2 < (n + DMy A + MAD + [x2B,



1 0
My, A M, A |x|2B,

n+2<
en 2|l < = ey T D mr DM+ D

But by the definitions, My, — Mp11 < |cpaz ||| since the amount M,, ., can increase by from M, ,
is no more than the new term in our list of terms we are finding a maximum from, since they are all
positive. Therefore,

Manid” | M AD B
n+2 n+2)(n+1) (n+2)(n+1)

Mz < Myyq +

|x|ZBr

Now set S,, := M,, + C,, where C,, := m, so we get
S AL S, AL |x|2B, C, ALY C, ALY

Sn+2 S Sp41 T w2 (n+2)(n+1)+(n+2)(n+1)_ n+2 (n+1Dn+2)

Therefore we have

o 5 4®
S <S 1 T nir
ntz = "“( +n+2>+(n+2)(n+1)

Since the three terms on the right of the previous equation cancel. Since M, and therefore S, is non
decreasing, we get

A A AW 4 4©
Sn+2 S S‘I’L+1 (1 + m + (n+2)(n+1)) S STL+1 (1 + n+2 ).
€Y (0) n a_ . . . . .
CallA;” + Ay a,then S 40 < S [Th=o( 1+ ) where this symbol is a product like how sigma is a

sum. Although these inequalities assumed n was “large enough”, we just have to have multiplication
by a constant to deal with the terms that are not large enough, so it will not affect the radius of
convergence argument. We can turn this product into a sum by taking logs on both sides to obtain

1 <1 (14
n<sn+z>_n(sl)+kz0n( )

Now In(1 + x) < x for all x>-1 because In(1 + x) — x has a derivative ofi — 1 which is positive when

x is between -1 and 0 and negative when x is >0. In(1 + x) — x has a stationary point at (0, 0), and
because itis increasing before that and decreasing after that, it is never positive. Therefore,

n+1

n n
a a a
< — — —
1n(Sn+2)_ln(51)+2k+2<ln(51)+2k+1 ln(Sl)+Zk

H,, is commonly used as shorthand for the quantity Z?ﬂ%- We have that
In (STl+2) < In (51) + a(Hn+1) < In (Sl) + a(Hn) +a

H, <1+ In (n). Why? Suppose, for example, n=5. Then 1 + In (n) is given by this blue area with the
graph being y=1/x (easily shown by integration)



-0.5

Image: Shows an area
equal to 1+ln(n) for n=5 as an example using the area bounded by y=0, y=1, y=1/x, x=0 and x=5.

And H,, is this area which is clearly smaller:

Image: Shows an area
equalto H(n) for n=5 as an example by using the area bounded by x=0, x=5, y=0, y=1/ceiling(x), visually
demonstrating that H(n)<1+ln(n)

SoIn(S,42) < c+a(H,) <c+a(l+In(n)) <c+ a(ln(n))

Where in the last step | have renamed c: What matters is it’s still a constant. Un-logging both sides
gives

Sn+2 < cn®
Where again, c is still some constant.

We now have that
Sp<c(n—2)*<cn®

Why do all this? Because the radius of convergence of our power series is given by

1

lim sup |cy|2/M
n—-oo

Now using the definitions, this result, and the fact that §,, = M,, = 0, we have that

1 1 1
M, \n S,\n /cn®\n c/mpe/n
s ()= (80 =2
| |™ | |™ | |™ |x|

So, since c'/™n%™ - 1 (You can take logs and use L’hopital, proved in the video, to check this), the lim

sup of this is no larger than ﬁ Since x could be anything less than R (where R is the common radius of

. . . . . 1
convergence that we’ve assumed |X| is less than the entire time), the lim sup is no larger than = SO the

reciprocalis no smaller than R, so done (at last). The series solution does in fact converge within the
common radius of convergence of the coefficients of a 2" order linear differential equation.



Distance between point and plane formula

This is because if a plane is defined by ax+by+cz+d=0 then we know that any point’s distance from the
plane is given by the length of the line segment normal to the plane, from the plane to the point. We
can also rewrite the equation of the plane as (a,b,c).(x,y,z)=-d. We know that the normal has direction
(a, b, c) since for any points P, Q on the plane, (P-Q).(a,b,c)=-d-(-d)=0 and also it is visually obvious
that P-x is perpendicular to the normal of the plane. So the distance from any point R to the plane is
the length of the component R-P in the direction of n, where n is normal to the plane and P is a point

onthe plane. This means it is given by% butn.Pis-d soitis given by ln'f;—ldl

, and the result

follows.
Matrix transpose relation

We want to show that (AB)T = BT AT for matrices A and B. This is true because the row i, column
element of AB is given by doing (row i of A).(column j of B) and so the row j, column i element of (AB)T
is given by that same formula. The row j, column i element of the right hand side of the equation above
is equal to (row j of BT).(column i of AT) which by the definition of the transpose is indeed equal to
(row i of A).(column j of B). The matrices are equal element-wise so they are equal.

Cross product properties
We want to show that:

- AxBis perpendicularto Aand B

- AxB=-(BxA) (anticommutitivity)

- Ax(B+C)=AxB+AxC (distributivity)

- |AxB|=area of parallelogram spanned by Aand B

It will be helpful to think of the cross product as the determinant of the following matrix, since if you
actually compute this determinant you can see that it is equal to the formula for the cross product
that we assume is true and want to prove these properties from. (Note: i, j, k are the standard unit
vectors, and the subscript denotes the coordinate)

i A, B,
AxB = det ] Ay By
k A, B,

This proves AxB=-(BxA) as swapping two columns changes the sign of the determinant, and that
Ax(B+C)=AxB+AxC since the determinants are linear in columns as shown earlier. Now we can
consider the determinant of the following matrix:

Ay Ay By
Ay Ay B y
4; 4 B,

Clearly itis zero because it has two columns the same, but another way to see this is to consider
expanding it out by the first column, ie the determinant is

A(AyB, — ByA,) + A, (B A, — A;B,) + A,(A:B, — B,A,)

But notice, this is actually equal to A.(AxB), and so we have that A.(AxB)=0. Applying the same
argument to B gives that AxB is perpendicular to both A and B.



To prove the thing about area, we notice that the sum of the squares of the components of the cross
productis the square of the cross product by pythagoras, and that value can also be shown (by a
direct computation) to be given by this formula:

A,B, — B,A, A,
det |ByA, — AxB, A,
BxAz - Asz Az

RS

So now picture this geometrically: We have a vector AxB perpendicular to vectors A and B and we
want to find the length of AxB. We know that the volume of the parallelopiped spanned by A, B and
AxB (By the volume property of the determinant proven earlier and the determinant of the matrix
above) equals the square of the magnitude of the cross product, but the volume of this parallelopiped
also equals the magnitude of AxB times the area of the parallelogram spanned by A and B. Cancelling
a factor of |AxB| on both sides gives the desired result.

Why decomposition by eigenvectors works:

The reason A = PDP~!is essentially that (PDP~1)v takes v, and if we take it to be separated into
eigenvector components, it first moves v such that those are its real components, scales everything
by the eigenvalue factors, then moves it back.

Eigenvectors with different eigenvalues are actually linearly independent so the matrix P in the
decomposition is actually invertible

Proof: Suppose we have r different eigenvalues and we pick r eigenvectors, one for each eigenvalue.
We want to show that they are linearly independent, ie none is a linear combination (sum of constant
multiples) of the others.

Suppose that they are linearly independent, meaning there exists constants a4, a,, ... a, not all 0 such
that a,v; + a,v, + -+ a,. v, = 0 where vis our eigenvectors.

Take the p that is the least p such that p of the a’s can be different from 0 with this satisfied.

So now suppose a;v; + a,v, + - + a, v, = 0 with all coefficients non-zero. Then

(A= 4D(a,v; + azv, + -+ + ayv,) = 0 by assumption, but we know that (4 — 2;1)(a,v,) = 0 by

definition, so (4 — All)(azvz +azvz+ -+ apvp) = 0. Now this means that
0=(MA- All)(azvz +azvz+ -+ apvp)
= A(azvz +azvz + -+ apvp) — Al(azvz +azvz + -+ apvp)
Therefore, since these are eigenvectors,
(az(ll —A)v, +as(4 — A3)vg + -+ ap(ll - lp)vp) =0
This contradicts that p is the least number of non zero coefficients we can have. So done.
Symmetric matrices decompose into PTAP = D and this is the same as P"1AP = D

This is called the spectral theorem. It is sufficient to show that the eigenvectors are perpendicular, as
then we see that if the eigenvalue matrix is Athen ATA = AAT = I by a dot product argument, so the
transpose of Ais the inverse of A. Here we assume that the symmetric matrix has real values,
otherwise the claim about the transpose being the inverse, the more general result that works for



complex numbers is about Hermitian matrices, where if you take the complex conjugate of the
transpose of A you get the inverse of A, and for real numbers taking the complex conjugate simply
does nothing, and the proof for that result goes exactly like the proof shown below.

If Sis our symmetric matrix and v is an eigenvector with eigenvalue A then by the definition of
eigenvectors we have that Sv= Av.

So, suppose we have eigenvalues A and p (which are not equal to eachother, this is another
assumption used in the mathematical statement we are proving) with eigenvectors vand u
respectively, then we have

Sv = Av (1) and Su = pu (2). We can multiply both sides of (1) on the left by the row vector u” and
both sides of (2) on the left by the row vector v7. This will give u” Sv = AuTvand v"Su = wwTu, where
the constants can be moved out to the front. Now we will take the transpose of both sides of this last
equation so we get (vTSu)” = p(v"uw)” and then use the relation about matrix transposes from earlier
TsT

to simplify this to u” STv = puTv. Itis here that we use the assumption that S is symmetric, as by

definition we have that S = ST sou’Sv = pulv.

Since we have u” Sv = AuTv from earlier as well, it means pu’v = Au’v as if they are both equal to
u’ Sv they must be equal to eachother. Therefore, we have 2 options: Either A = i (so the eigenvalues
would not be distinct as per our assumption), or u’v = 0. Because of how matrix multiplication works,
finding u”v is actually the same as taking the dot product u.v, so we are done and we have proven the
perpendicularity as required.

Cayley hamilton theorem

We define Adj(M) as the transpose of the cofactor matrix. We have det(M) M~! = Adj(M) if Mis
invertible, and we always have that det(M) I = MAdj(M).

We define B=Adj(tl-A) where A is an nxn matrix with a characteristic equation in t that is det(tl-A)=0.
Since the elements of an adjugate matrix are built by taking the original matrix and deleting a row and
column and finding the determinant (which in the case of tI-A will be polynomials in t with a power of t
not exceeding n-1), we know that the elements of B must be polynomials in t of degree up to n-1, so we
can write B as

»- stk B, for matrices By with coefficients not depending on t.
We know that det(tl — A)I = (tI — A)Adj(tl — A) sodet(tl — A) I = (tI — A) X3 tkB,

On the left hand side, we have t™I + ¢,_1t" I + c,,_,t™" 2] + -+ + ¢, tI + ¢yl where the c’s are the

coefficients of the characteristic polynomial of A and on the right hand side we have, by expanding,

t"B,_1 + t"1(By_, —AB,_1) + t""%2(B,_3 — AB,_,) + -+ t(By — AB;) — AB,.
n-—1

=t"B,_1+ ) (t*(Bx-1 — ABy)) — AB,
k=1

Now we equate the coefficients of powers of t from our two equations. We get that
I'=By 4

And that



cxl = By_1 — ABy

For k from 1 to n-1, and

col = —AB,
Now by multiplying both sides of each equation by A", A* and nothing respectively we get

A" = A"B,_4

cA¥ = A*B,,_, — A¥*1B,

col = —AB,

So we have that
A"+ e AV 4 g AT + ol =
A"B,_,+ A" B, ,—A"B,_; + A" ?B,_;— A" 'B,_, + -+ AB, — A*B; — AB,

The latter expression is 0 because clearly every negative term cancels every positive term, and this is
equal to the characteristic equation of A of A, where A is an arbitrary matrix. This completes the proof.

L’hopital’s rule

I have a video on this which shows a visual argument for the 0/0 case and then at the end shows
images of both the technical justification for that case and the proof of the other cases from that case.
Note that the rule assumes that the fraction with the derivatives exists — The original limit may exist
but that one may not.

A tricky integral problem

1

x2—q2?

We know and can derive using partial fractions a formula that says that f dx = %ln (%) +c.
21 dx = l,ln (E) + c. But this integral is also equal to arctan(x)+c.
x“+1 21 x+i

So we have two different answers. However, it turns out these are secretly equivalent. Another
example of this is how the integral of 1/2x gives both ln(x)/2+c and ln(2x)/2+c. The resolution to this

So, putting in a=i we know that [

second example is that the two answers actually differ by In(2)/2 by logarithm properties, which is a

x2+1

constant. We can do the same for the first example: Since |E| =2 1ifxisreal,
x—1i . x—1i . ix+1 . . . .
n (E) =1*arg (E) =1*arg (_ix—l) =ixarg(ix +1) —i*arg(ix — 1)

= i*arctan(x) — i * arctan(—x) = 2iarctan(x)
So=In (E) = arctan (x).
X+

So, two different answers could be secretly equivalent: This often happens when trig identities
involved. Note that if |x|=1 then x can be written as €479 and arg(ix+1)=arctan(x) because this can
be shown geometrically.

Conic section properties

They are called conic sections because you get them from slicing a cone, but typically at A level this is
not proven. If a cone has equation ¢;z2 = x2 + y? and a plane has equation x + ¢,z = 1 (where we
have rotated and scaled the figure so that the plane intersection with z=0 closest to the origin has



been standardized to the point (1,0) in the xy plane). Then we can make a substitution (specifically we
rearrange the second equation for z and substitute that into the first equation): A(1 — x)? = x? + y?
where A is some constant. If a=1 this cancels to give y? = 1 — 2x which is a parabola. This means a
parabola is what you would see if you were to look at the plane from the z axis (ie, looking down from a
point like (0, 0, 10000)). If you were to look at the plane from its perpendicular axis, it would stretch
out, below is an illustration of what | mean, we see that if we ignore perspective issues and act like we
are simply seeing a projection, the plane looks like a contracted version of itself when viewed from an
axis not perpendicular to it.

Images: Shows a plane viewed
from above and from the side, with its gridlines, so you can see my point.

Stretching a parabola still gives a parabola, if the x ory is scaled it’s still a parabola.

Similarly, if A<1, we get an ellipse equation, if A>1 we get a hyperbola equation. In both cases the
stretching argument still applies. Therefore we know that all three conic sections are gotten by slicing
acone.

Also, you can consider a parabola to be like a “limit” of an ellipse as it gets more and more stretched
out, by slowly tilting the plane intersecting the cone so A is 0.99, 0.999, 0.9999, etc

We can also easily verify, using trig identities, that the parametric equations for an ellipse, parabola, or
hyperbola satisfy the cartesian equations for them. The only thing we need to be careful of is that if we
use (Acosh(t), Bsinh(t)) as the parametric equation for a hyperbola, then cosh can only take positive
values if tis real, so we should either allow for complex t or use tan and sec.

Now we will prove that in an ellipse and hyperbola, the sum and differences of the distances of any
point on the curve from the foci respectively is constant, this is the defining feature of the foci. For an
ellipse we start by assuming the sum of the distances from the foci at (-c¢, 0) and (c, 0) is constant and
equal to 2a with a>c then we prove that the equation we get is the equation for an ellipse.



ViEz+e)+¥+ V(- +y?=2a
Viz+e)+y¥=2a—/(z - +¢?

J— -
2+ +y* = (2a- V(- +4?)

2:2+2c:z:+c2+y2=4a2—4a\/32—2cz+62+y2+32—2c=+c2+y2

dcz = 4a® — 4a\/22 — 2cx + 2 + 32

ay/z?—2cz+ 2+ =a’ —cz

a’((z — ¢)? + ¢?) = a* — 2a’cz + ?2?
a’(2? — 2cz + & + 1%) = a* — 2a%cz + P2?
a’z? + a’ + a¥y? = o' + 2P

22(02 _ cﬂ) + a2y‘2 — 02(0‘2 _ C2)

Note: the steps where we square both sides can be reversed since we always assume both sides to be
positive. Therefore we have equivalence between the equation for the ellipse in “pythagorean” form
and focus distance form.

In a hyperbola we do nearly the identical work. You should be able to figure it out by following the
same steps as in the ellipse proof, but here it is anyway.

Viz+e)2+2—V(z—-cP+y =2a
Vetor+¥=2a+(z—cf+s?
(@+e +9*= (2a+ V(@ — P +7)’

22+ 2+ +y’=4a’+4a/22 —2cx+ 2+ 2+ 22 —2ex + 2 + 2

4&:4&2+4a\/m3—2cm+02+y3

alr.\/:zr""—2::-:::+c2-+~g,f"":c:'.lz—a2

a*((z — ¢)* + %) = c*«* — 2a’cz + o'

From here, the steps are the same, except now the equation we get at the end is a hyperbola equation
because c>a.

In a parabola y? = 4ax the distance fron the focus (a,0) to a point on the parabola is given by

y4-
16a2

2 2 2
J(x —a)? +y2,and x = 2 so we have \/(Z—a — a)? + y?. We can simplify this to\/ - y; +a?+y?

4a

4 2 2
which is \/1)6’7 + y; + a? whichisa + Z—awhich is atx which is the distance from the relevant point on

the parabola to the directrix.
Now, we prove properties of eccentricity. Suppose that the eccentricity of an ellipse or hyperbola is

2
the value of e such that x? + 1{—62 = 1, then we will prove that e is both the ratio between the distance

between the foci and the length of the long diameter of the ellipse or the distance between the parts



of the hyperbola, and the ratio of the distance of a focus and the corresponding directrix. For the first

one, note that if we consider e to be 2 in the proofs above the final equations can be simplified to be

2
x? + 137 = 1 and also that by picking the point on the curve in question to be a point on the x axis it

becomes clear that 2a, our constant distance is indeed twice the the length of the long diameter of
the ellipse or the distance between the parts of the hyperbola.

For the other property, if we have a point on the curve, we let d; be the distance from that point to the
focus and d, be the distance from that point to the corresponding directrix. Note also that even if the

denominator of x is not 1 both properties hold by scaling. We have that d, = /(x — e)? + y? by

pythagoras and that d, = x — i Substitutingin y2 = (1 — x2)(1 — e?) which comes from rearranging

the equation for the curve we getthat d, = /(x — €)% + (1 — x2)(1 — e?) =

Vx2 —2xe+e2+1—x2—e?2+x2e2 =vV—-2xe+ 1+ x2e? = xe — 1 = ed, as required.

Recurrence relations

We will not really do any work here because the parts of this that are used as a black boxin some
specifications can be proven using the same ideas as the differential equations from earlier. Perhaps
this is unsurprising since the methods are very similar for solving both types of problems. If you use
the analagous substitution for the second order case, then you will get the right complementary
function, and the same result that says the thing about the general solution being complementary
function plus particular solution also applies and can be proven the same way. It remains to verify the
results in the tables of particular solutions given in some textbooks. However, it is easy to verify that
you will get a solvable equation to solve for the constants as a result of plugging them in, and anyway
using educated guesses and substitutions is more proper than memorizing tables.



