We will have to build a lot of boring theory and definitions that may seem irrelevant to get to the
results we need. While this may look intimidating, | will aim to make this more self contained than all
of the other proofs | have seen of results like this, which annoyingly are all hard to follow because they
are aimed at people who are better at maths than me even though | am at the level where | am
sometimes expected to implicitly use these results, something | aim to fix in this document for future
interested students like me. No more “Let (Symbol I’ve never seen) be a measure space (steps with
symbols | haven’t seen that | can’t follow) intimidation” nonsense.

A quick note on open sets:

An interval on the number line is called open if it goes from A to B without containing A and B, ie it
does not contain its boundary. The same can be said for subsets of the plane or hyperplanes —they
are open if they do not contain any of their boundary. They are closed if they contain all of their
boundary. The formal definition of a boundary is a point where no matter how small of a circle or ball
you make around that point, it will contain points both inside and outside the set. Note that since an
open set contains none of its boundary, it has the property that for any point in the open set, all points
sufficiently close to that point are in that set, so open sets must always have some thickness to them.
This is related to the idea that there is no smallest real number greater than another real number, and
whether sets are open or closed turns out to be surprisingly important. Also, arbitrary unions of open
sets are open since each point has a “ball” around it inside each of the open sets in the union and
thus the whole thing, similarly arbitrary intersections of closed sets are closed. The reverse
implications only hold for finite unions and intersections (since infinitely many balls intersection
could be a point but finitely many is a ball).

We usually call open intervals (a,b) meaning everything from a to b not inclusive, and closed intervals
[a,b] to mean everything from a to b inclusive, and [a,b) means everything from a to b including a but
not b.

We need to recall the definition of the Lebesgue integral from the end of level 4. Now we prove a useful
lemma known as the monotone convergence theorem. Suppose we have a sequence of non-negative
functions 0 < f; < f, < f; ... converging to f in the limit pointwise (ie, f is the pointwise supremum),
and suppose fis integrable (ie its integral is finite).

To do this, we will prove that eventually, [ f, eventually gets larger than ([ f) — & regardless of how
small we make &.

We know we can find a simple non-negative function g(x) suchthat [ g > (J f) — § because [ f is

defined as the least upper bound of integrals of simple functions, meaning if we could not find simple
functions below f whose integrals are arbitrarily close to the integral of f, f would not be the least upper

bound. The reason for our choice of g will become clear eventually. Now we want to shift our g

downwards by a constant § in such awaythat [ g~ > ([ f) — %where g isdefinedasg —68ifg >4

and 0 otherwise. This ensures g~ is always non-negative and that itis at most g — §. So we have two
cases: If the length of our interval that we are integrating along is a finite length |, then we pick § to be

i, since then the total amount that the rectangles get moved down by which is %times the total

length of the rectangles which is lis at most § If we are integrating from —oo to co then we can still

apply the same argument since the length on which our g is non-zero is finite. This is true because the
integral is defined as the least upper bound of the integrals of all such g. Now define the set S,,as the



set of values x such that f,,(x) = g~. Then since the f’s are increasing, each set S,, must contain the
previous set S,,_;. Now | claim there is an N such that the integral over the parts of our interval not

containing Sy of f is less than or equal to § To do this, suppose the contrary, that there is a set T such

that the integral of f over T is more than Z but no pointin T ever goes into any of the §,,’s. We know that

fis not 0 anywhere in T because if f(a) is 0 then ais in all §;;’s since all f,,’s will be 0 at those points by
definition which means they satisfy f,,(x) = g~since g~ would also be 0 at those points as g~ is non
negative and never bigger than f which is 0. But then, this means that everywherein T, g~ is strictly
less thanf, since if 0 < f < § then g~ = 0 and otherwise g~ = f — §. Therefore, f,(x) < g~ foralln
and x in T by definition of the S,,’s and of T, so the least upper bound of f,,(a) for any pointain Tis at
most g~ (a) which is strictly less than f(a), which contradicts the definition of f. This means if we let Ty

be the interval not including S, then fTNf < § Therefore, putting everything together, [ f;, > fsN fo =
[ el M = R M = § > ([ f) — &. This completes the proof of the lemma.

Note which will make sense later: We define the integral of the dirac delta parts separately, but the
theorem above still applies to those — | will explain why in the same part where | define dirac deltas in
the stats document.

Note also that the same argument can be used to prove the above theorem (and thus the theorems
below that depend on it) for integrals of functions over 2D, 3D, or higher dimensional areas. This will
be important later. Bolzano weierstrass (A theorem proved below) and its consequences can be used
provided the setis not only bounded but also closed, since we want sequences to not only converge
but have their limit be part of the set.

Now we will prove another lemma known as Fatou’s lemma.

Now, Fatou’s lemma states that if we have a sequence of non-negative functions f,,(x), then for every
x define f(x) = lim inf f,(x), then on any interval we have [ f < lim inf [ f,.
n—oo n—oo

Now, for all fixed x, we define g, (x) aslicnf fi(x). Then we know that for any fixed x, this is not
2n

decreasing as chopping more terms of the start cannot make the infimum lower. We also have the
following by stuff we have discussed so far:

f(z) = liminf f, (z) = sup E}lf fr(z) = sup g, ()

We have ff = fsup Jn = SUp f gn Where the second equality is because gis increasing so we can
apply the monotone convergence theorem. Since fgn is anincreasing sequence, the lim inf of this
sequence is going to equal the limit of the sequence, as the infima of the tails are the same as the
terms themselves. But the limit of an increasing sequence is the same as its supremum, so we now
have that [ f = sup [ g, = ligln_)gonffgn. Because g, is by definition not greater than f,, for all n at any

input value, we have that[ f = sup [ g, = lim inf [ g, < lim inf [ f,, completing the proof of Fatou’s
n—-oo n—-oo
lemma. From how we defined f, we have that [ lim inf f, <lim inf [ f,. We can also get that if f;, is
n—-oo n—-oo

bounded above by a function g with a finite integral on our interval for all n, then applying Fatou’s
lemmato g — f;, gives us the reverse fatou lemma: [ lim sup f;, >lim sup [ f,.

n—-oo n—->oo



The dominated convergence theorem states that if we have a sequence of functions f,, (x) which for
all x converge to a function f(x) as n goes to infinity, and there is a function g(x) which has a finite
integral on the interval we are working in, and that | f,,(x)| < g(x) for all n and all x, then we have that
f%l_l)‘glo fn = 111_1)120 [ fn, essentially giving us a condition for when we can swap limits and integrals. Recall

how at some places in level 4 we talked about the triangle inequality which says that |a+b|<|a|+|b]|, we
willuse this now to say that |f — f,| < |f| + | = ful = |f] + |fu] £ 29 (note that fis at most g at all
places since it is the pointwise limit of functions that are at most g so it would not make sense for it to
exceed g.) We also have by definition that lim sup|f — f,,| = 0. Also, in this next step, we will use the

n—-oo

fact analagous to the triangle inequality which says that | [ h(x)| < [|h(x)| for any function h(x). For
real numbers this is the case because h is always between -|h| and |h|, so the integral of h will always
be between the integral of -|h| and the integral of |h|, so the absolute value of that will be at most the
integral of |h|. For complex numbers (which | am doing to show that we can generalize this beyond real
integrals), we have [ h = e so | [ h| =r and [ he™® = r. Sinceris real, we have that Re([ he %) =
r. Since the real part of the integral is the integral of the real part, we have [ Re(he %) =r <

[ |he™®| = [|h|.Since | [ h| = r < [|h| this completes the proof. Now back to dominated

convergence:
[7- ]

Now, we use the reverse fatou lemma:

~|[¢ == 1=

limsupf|f—fn| S]limsuplf—fnl =f0=0

n—oo n—-oo

Therefore, since the lim sup is at most 0 and the terms in [ |f — f,| are non-negative, both the lim sup
and the lim of this sequence must be exactly 0.So, | [ f — [ ful < [|f = ful 2 0so |f f — [ fn| = 0so
ffn approaches ff so the limit and integral interchange is justified.

Now, if f,(x) is defined as n for 0<x<1/n then the integral of this will be 1, but at all points between 0
and 1 f,, will eventually go to 0, so the integral of the limit is not the limit of the integral. It turns out that

R . . . 1 1
in this case it turns out we cannot find a function g such that for all n we have |f0 fn| < |f0 g| < oo,

This is a standard textbook counterexample.

Another result says that if | have fff(x, y)dxdy on a rectangle (that may go off to infinity) then | can
swap the integrals provided [[ |f(x,y)|dxdy is finite on that rectangle. An intuitition for we have this
condition is because we know from level 4 that we can safely rearrange terms in a sum if the absolute
value of the terms has a finite sum, and so the same applies for all the sums of f(x, y)dxdy as dx and
dy get smaller, as by moving the integrals around we are just changing the order in which we add the
terms, which we already know is allowed whenever [[ |f(x, y)|dxdy converges. We will actually prove
that in the multivariable case we can change the order of integrals.

Proof of the claim above:

We can define the integral as [[ f(x,y)d(x,y) in the supremum sense analagous to above. Then if we
show that this equals [ ([ f(x,y)dx) dy then the result will follow by symmetry. If we have more than
two variables, our proof will show that we can split the many variables into 2 and split it into multiple

integrals. For example, [[[f f (x, v, z,w)d(x,y,z,w) = [[[[[ f(x, v,z w)d(x,y)] d(z,w)



Part 1 — Proof for non-negative functions:
We will do this for the 2D case since itis precisely the same idea as the general case.

Set g(x) == [ f(x,y)dy. Note that the theorem holds for the indicator of a rectangle by direct
calculation, and thus it holds for all non-negative simple functions (since they are just finite sums of
indicators). There exists a sequence of hon-negative simple functions that is non-decreasing and
converges to f and is such that [[ f,,(x, y)d(x,y) = [[ f(x,y)d(x,y) (In fact, by monotone
convergence, pointwise convergence to f is enough to gurantee that ff fn(,y)d(x,y) =

[ f(x,y)d(x, ) if fis non-negative and non-decreasing). Pick such a sequence f;, and define g, (x) :

ffn(x' y)dy.

By the monotone convergence theorem applied to [ f,,(x, y)dy = g,(x), we have that g,,(x) - g(x)
as ffn(x, y)dy — ff(x, y)dy, since f, is a non-decreasing sequence of non-negative functions
converging pointwise to f. After this, we can apply it again in x to fgn(x)dx to show that f In(x)dx -
[ g(x)dx, for exactly the same reason.

Finally, we already know by how we picked f; that [[ f,(x,y)d(x,y) = [[ f(x,y)d(x,y). Foreachn,
[ gn(x)dx = [[ f(x,y)d(x,y) as the theorem is proved for simple functions.

But then the limits as n goes to infinity of [ g,(x)dx and [[ f,(x, y)d(x,y) must be the same as the
integrals are equal for alln. This means [ [ f(x,y)dydx = [ g(x)dx = [[ f(x,y)d(x,y) as required.

The symmetric argument allows us to conclude that [[ f(x,y)dxdy = [[ f(x,y)d(x,y) =
If f(x,y)dydx when fis non-negative.

Part 2 — Extension to general case

Since the integral of the absolute value of f is finite, it means if | restrict f to where it is positive, and
define a function g as -f where fis negative, | can apply part 1 to both of those, and then subtract the
results. This is only problematic when we do not have absolute convergence and then we get co — oo,

Also, in my exponentials and logarithms video, | briefly mentioned that if a function has a single-
valued antiderivative then the integral along a path of that function does not depend on the path. By
“integrate along a path”, | mean take the sum of the function times the distance you move by on the
path (eg if you move from 1.07+3.12i to 1.08+3.14i you add (0.01+0.02i)f(1.07+3.12i)), then take the
limit of these sums as these distances go to 0. Intuitively, similar to actual integration, taking the sum
like this moves you along the antiderivative, which if it is single valued (unlike log, for example) will not
allow you to possibly have path dependence.

Lemma (Bolanzo weierstrass): Every sequence thatis bounded in absolute value has a(n infinite)
convergent subsequence.

Idea: Plot the sequence on a graph then take the terms that are maxima of the first n terms, like this
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Image: Shows a sequence graph with
peaks circled.

Here | have circled peaks, ie points that are larger/higher than (or equally as large/high as) all points
after them. If there are infinitely many of these, then these form an infinite non-increasing sequence
which is bounded below, which has a highest lower bound that it must converge to. If there are finitely
many peaks, this means there has to be an infinite sequence of non-decreasing points, since after the
last peak, the next term is not a peak meaning there is a term after that term that is larger than it, and
that term is also not a peak so there is a larger term after that and so on. This forms an infinite
increasing sequence which is bounded above, which converges to its least upper bound. So done.

Formal definition of a continuous function:

We want to say that as the inputs get close together the outputs of the function get arbitrarily close
together since that is what it intuitively means to get continuous. We will write this precisely as
follows:

A function f(x) is continuous at x if for any €, no matter how small, you can pick § small enough that for
any a with |x-a|< §, |f(a)-f(x)|< €.

We will need this definition because we will prove that if a function is continuous everywhere on a
finite interval, including the endpoints of the finite interval, then it is uniformly continuous (I will
explain what this means shortly). This is because, and | can’t believe I’'m saying this, this is a technical
dependency for a technical dependency (convergence in distribution implies convergence in
characteristic function) of a technical dependency (cramer wold device) of a technical dependency
(multivariate clt) for the chi squared result. In fact bolzano weierstrass was for FIVE levels of
dependency. Uniformly continuous means that not only are we able to pick a é for each x, but a § that
works for all x. An example of a function that is not uniformly continuous is 1/x on the open interval
(0,1), since if | pick a certain g, then no matter how small | pick §, | can go close enough to 0 that the
|x-a|< & implies |f(a)-f(x)|< € condition is not satisfied, so | cannot pick a § that works for all x.

Proof of result: Since we are assuming our function is continuous on a closed bounded interval,
bolzano weierstrass applies by boundedness, and the subsequence in question converges to a limitin
the interval by closure of the interval.

Assume for a contradiction that our function is continuous but not uniformly continuous on our

closed bounded interval. Then there is an €>0 such that if | pick § = %there is some x,, y, with



I, — vl < %but |f (%) — f(yn)| > €. We know that x,, and y,, both have convergent subsequences

converging to places on our closed interval, and in fact they converge to the same place since the
difference betweenx, and y, gets arbitrarily small. If the subsequences in question are x;, and y,
and their limits are x, then f(x,,) = f(x) and f (y,,) = f(x) because continuous have functions that
whenever the inputs are close the outputs are close, so intuitively you can pass limits through
continuous functions like this. But f (x,,) and f(y,,) somehow converge to the same limit but are
always > g, which is a contradiction.

Now, | will talk about cardinality. This is really fun stuff, but | will not go through all the fun results here,
only the results we need. The motivation of this is to show that there are, in a precise sense, “more”
real numbers than natural numbers, so | can show that you cannot take a sum over all the real
numbers of positive numbers and still get a finite number.

We consider two sets to be the same size if there is a one to one correspondence between their
elements. This sounds obvious, but it shows that there are equally as many even positive integers as
positive integers, because we can map 1—2 and 2—4 and 3—6 and so on, giving us a one to one
correspondence.

Now we prove we cannot find a one to one correspondence between real numbers on any interval and
positive integers. We will do this for the interval (0,1) then note that we can get to any interval by
scaling, or the entre reals by doing cot(mtx). The property of there being a correspondence to positive
integers is called being countable. But, | think listable is a better term.

So, suppose we do, in fact, have a list of all the real numbers between 0 and 1.

0.3141592653589793...
0.2718281828459045...
0.1414213562373095...
0.3498579345858968...
0.9988237478199283...

aprown=

Now construct a new number where the n’th decimal digit after the pointis not the red number, and
such that we do not have infinite trailing 9’s or 0’s (to ensure the number has a unique decimal
representation. For the numbers in our list we pick the one with trailing 0’s and not trailing 9’s
whenever we have to make this choice). For example, adding 1 to each red we could have 0.48293...
But this is clearly not on the list - It differs from everything on the list by at least one digit.
Contradiction. Essentially, this makes it so if you think you found a way to list them, | can prove you are
wrong.

Now if we had a sum over the real numbers of positive numbers x, split them into subsets:

1

le,%Sx<1, <x< <x<

N | =
w R
.

I

)

w

Then one of these subsets has to have infinitely many elements. Why? If they all had finitely many

elements then they would form a subset of ) this infinite
tabl Table: empty table with rows as the
able:

sets defined above, meant to be
112(3|4|5|6|7|/8|9]|10 filled with the terms in our

Set 1 uncountable sum.
Set 2




Set 3
Set4
Set5
Set 6
Set7
Set 8
Set9
So | could then go along the table in a zigzag pattern like this in the order shown below, adding to my

list whenever the elements are in the table, and not adding them otherwise.

1 12 |3 |4 |5 [6]7]|8]9]10

Set1]1 |2 |6 |7 |15]... Table: Shows 1, 2, 3, in the relevant
Set2|3 |5 |8 |14 cells to visually show a one to one
Set3 |4 |9 |13 .

mapping between the numbers and
Set4 |10 | 12 :
Set5 | 11 the table cells, if the table were to go
Set6 on forever.
Set7
Set 8
Set9

All cells get reached eventually, so this would imply we can list the cells. But we are assuming we are
adding one term for each real number, and we cannot list the real numbers. Therefore, there is a set
with infinitely many elements, so the sum is infinite.

Definition (big O notation):

A function g(x) is O(f(x)) if when x is sufficiently close to x, |g(x)| is bounded by M|f(x)| where M is

some fixed positive constant. If f(x) is not 0 in the vicinity of x, we can write that |%| is bounded by M

when x is sufficiently close to x,. We can also say, and this is often done in computer science when
analyzing how long an algorithm will take, that a function is a function g(x) is O(f(x)) as x goes to infinite
if when x is large enough, |g(x)| is bounded by M|f(x)|. In previous documents, the value of x, has been
implied. Sometimes people write g(x)=0(f(x))

Definition (little o notation):

Like big O notation except if g(x) is o(f(x)) at x, it means that g(x) gets much smaller than f(x) when x is
sufficiently close to x,. Precisely, it means that M can be made arbitrarily small by making x
sufficiently close to x,, or by making x sufficiently large in the case X is infinity.

Note that if f(x)=0(g(x)), then we necessarily also have f(x)=0(g(x)).

Examples:

x # 0(x?) as x - 0 since x? is much smaller than x. In fact, x? = o(x) asx - 0.
x = 0(x?) =o0(x?)asx > o butx? # 0(x) as x > .

x =0(Vx)asx - 0.

sin (2x) = 0(x) asx — 0, butsin (2x) # o(x) asx — 0.



x # 0(xsin(x)) as x = o, because although x does not seem to be much larger than xsin(x), the ratio

- is unbounded when x gets close to integer multiples of .
xsin(x)

Also, a principle here is the idea that a polynomial is dominated by its leading term. For example

2x3 + 4x + 12 = 0(x3®) as x » o because when x>1, |2x3 + 4x + 12|< |2x3| + |4x]| +
|12]< |2x3] + |4x3| + |12x3| = 18|x3| so we can put M=18, then done. Also, big o notation can

capture the idea that exponentials beat polynomials (by the way you can prove this as % goesto

infinity as x goes to infinity which you can see if you apply Uhopital’s rule at least b times), as we can
write that P(x)=o(exp(x)) for any polynomial P. Also, log(x) = o(x¥) for all positive € and this can be
proven the same way, or by thinking of it intuitively as a sort of inverse of the exponentials beat
polynomials idea. Note exp(x) means e”x.

Another idea is that non-zero constants don’t matter here since we’re looking at the bigger picture
with the growth rate of these functions.

Example:

Since }lir%w = f'(x), }llir%w — f'(x) = 050 LT _ £1(5) = o(1) as xgoes to h
by definition. Therefore, f(x + h) — f(x) — hf'(x) = o(h) by multiplying by h on both sides, so we can
write that f(x + h) — f(x) = hf'(x) + o(h), which looks a lot like what | did when | justified

differentiating infinite power series.
Definition: Taylor polynomial

A taylor polynomial of degree n is a taylor series for a function that is n times differentiable but only up
to the termin x™. We write this as T,,(f) (x). This is a polynomial which gives an approximation of f
near some point x,, with error equal to o((x — x¢)").

Claim 1: If fis n times differentiable at x, then f(x) — T,,(f)(x) = o((x — x,)™) as x = x, if x, is the
point we are doing a taylor series around.

Claim 2: If f is n+1 times continuously differentiable on the interval [x,, x] then f(x) — T,(f)(x) =
0((x — xo)™1) as x - x if x, is the point we are doing a taylor series around.

Claim 3: If the conditions for claim 2 hold, then there exists some t € (x,, x) such that

(x_xo)n+1

fG) = Tu(H ) = === ™).

(n+1)!
We will prove this.
Lemma 1 (Extreme value theorem):
Any function continuous on a finite closed interval is bounded.

Note: Itis very important that the interal is closed. On the open interval (0, 1) we can define 1/x which
is continuous on that interval, but not on the closed interval [0,1] because the closed interval contains
x=0 but the open interval does not. But there’s not much you can do to make a continuous unbounded
function defined on a finite closed interval — Try it!

We will use the fact that every bounded sequence has a convergent subsequence since that was
proven in the level 6 technical results document.



Suppose for a contradiction f is unbounded. Then for all n, we can choose x,, in [a,b] with |f (x;,)| > n.
Now pick a convergent subsequence x,, of the sequence formed by each each x,,, and callits limit L,
which s in[a,b] since [a,b] is closed so limits of sequences in [a,b] are in [a,b]. By continuity, f(xnk) -
f (L), butsince f(xy,) is unbounded, it follows that this is a contradiction, since f (L) cannot be
defined.

Important note: Bolzano weierstrass holds for sequences of points in k dimensions, provided the
bounded set the sequence isinis closed as mentioned above —there is a subsequence whose x
coordinate converges and a subsequence of that whose y coordinate converges etc, and thus the
above theorem holds for functions of more than one variable, as well as the theorem about uniform
continuity and about riemann integrals for continuous functions, as the definition of continuity is
analagous. This is important since we use these theorems in the context of functions of multiple
variables.

Lemma 2 (Mean value theorem):

This lemma assumes the values are real, so everything proven here applies to real numbers, but not
general complex numbers.

First of all, a picture (from wikipedia):

1
The function f attains the slope of
the secant between a and b as the
derivative at the paint £ € (a, b).

f(5) — fla)

fib)

Itis also possible that there are =
multiple tangents parallel to the secant.

You can see that it’s kind of obvious that the function’s derivative attains its mean value, since the
function is differentiable everywhere by assumption so there are no spikes. This is essentially what
the theorem says. However, to prove it, we want to subtract the line from (a, f(a)) to (b, f(b)) fromy. This
line has the slope we want so we want to prove that our new function, which is 0 at a and b, attains a
derivative of 0 between a and b. This new function is either constant, in which case the theorem is
obvious, or it goes above 0 at some point (If not prove the theorem for minus the function). Since it is
continuous on a closed, bounded interval, it is bounded, and has either a maximum or a minimum. At
such a point, the derivative exists by our hypothesis, and it can’t possibly be something other than 0.
F)-f(0)
X—C
would be positive if we make x close enough to ¢ with x>c, implying f(x)>f(c) which is a contradiction.

Why? Suppose the derivative were positive at a maximum point c, then by definition of limits,



In particular, we have Rolle’s theorem, which says that if f(a)=f(b)=0 and f is differentiable on (a,b) then
there is a point a<x<b such that f’(x)=0

Lemma 3 (Generalized Rolle’s theorem):

Here is the statement and proof taken from Cambridge notes:

Theorem (Higher-order Rolle’s theorem). Let f be continuous on [a,b] (a < b)
and n-times differentiable on an open interval containing [a, b]. Suppose that

fl@)=f'(a)=fP(a)=---= f"V(a) = f(b) = 0.
Then 3z € (a,b) such that £ (z) = 0.

Example: The function x3 — x? has its first derivative and value equal to 0 when x=0, and its value
equalto 0 atx=1, so between 0 and 1 it must have a point of inflection. Indeed it does when x=1/3.

Theorem 1:

If f(x) is ntimes differentiable at x = x, then

(x—

£ @) = (o) = (= x0)f" () — 2L 7 (xg) — oo — EZL )

iso((x —xg)™) asx — x,.
Proof:

The first n derivatives of the above expression are all 0 when evaluated at x, because for k between 0

(x

_ k
and n inclusive the k—x'O)f(k) (x,) term has k’th derivative equalto f ) (x,) and all its other

derivatives are 0 at x, by repeated application of the power rule so therefore it cancels the k’th
derivative of the f (x) term to make it equal to 0.

f(x)
(x—xp)"

when you make it arbitrarily small so it can go in the denominator.

So, by the definition of o, we need to show that — 0asx - x,. Thisis fine as (x — x,)™ isnot 0

Now, if we can show that any function whose first n derivatives are all 0 at x; is o((x — x¢)™), we will

be done. It is clear that a function whose value and first derivative is 0 at x is o(x — x,) since f(—xx) =
—A0
g(x)—g(xo)

X—Xo

theorem is true for n=k, then we will prove it is also true for n=k+1, therefore proving this by induction.

- g'(xy) = 0, so this theorem is true if n=1. But now suppose that we know that this

Let g(x) be such that at x; its value and first k+1 derivatives are all 0. By the induction hypothesis, g’(x)
has its first k derivatives and value equalto 0 at x, so g'(x, + h) = h*e(h) with e(h) » 0as h - 0, by
the definition of little o notation and the induction hypothesis. By the mean value theorem, there
exists some 0 between 0 and 1 such that

+9h) = g(xo+h;—g(xo)

g (xg , orequivalently hg'(x, + 9h) = g(x, + h), meaning that by the induction

hypothesis g(x, + h) = h(hke(ﬁh)) = hk*1¢(9h) = o(h**1). So induction done and proof complete.
Remark:

Just because each remainder is small does not mean that the taylor series converges, since
convergence at some x requires that there, the remainder is uniformly small, but it could be that the



interval where the remainder is small shrinks and is zero in the limit. There are functions such that the
taylor series does not converge in any interval despite the functions being infinitely differentiable, like
exp (—x~2) around x=0. However, it turns out that if the function has a complex derivative the taylor
series always converges in some interval, see IB complex analysis. I’m not proving it because we don’t
need to use it for this purpose.

Theorem 2:

If f(x) is n+1 times continuously differentiable in an open interval containing x, then f(x) — f(x,) —

(x = 1) (o) = E22 77 (irg) — -+ = S22 £ () — v O((x — x0)™ ) @5 x = xp.

Proof:
Lemma:

Let f be n+1 times differentiable on [a,b] with it’s (n+1)’th derivative continuous. Then we have that

fb) = (@) + b - a)f'(@ +LEL D) + -+ LD f0(q) 4 [2 LD pan gy,

Proof of lemma: We will do this by induction on n. When n=0 the theorem says

b
Fb) = f(a) + f F(Odt

Which is known to be true. Now we will do integration by parts to get

"O-D" —b O™ O™
,fan—f( )(t)dt = Wf( )(t)l me( )(t)dt

_ )n+1

3 (b _ a)n+1

n+ D! O

b
ACRS ==

So the lemma follows by induction.

Now this implies the result since f(”“) is continuous on the closed interval [a,b] and thus bounded
)n+1

there, say itis bounded in absolute value by M. Then the integral is at most f:(b;—f)nMdt = M%

which is 0((x — a)™*?1) as required.

Theorem 3:

f) = fxe) — (x — x0) f"(x) — %f”(xo) S, C x°) =20 £ (x) = Mf(”“)(t) for some

(n+1)!
t(x) between x, and x, provided the first n+1 derivatives of f exist and are continuous from x, to x.

Proof:

The n=0 case is just the mean value theorem. Consider g(x) := f(x) — f(xg) — (x — x0) f'(x0) —

_ 2
%f”(xo) —. Mf(") (x0). This has its value and first n derivatives at x, equal to 0 by the

same reasoning as we gave in one of the earlier proofs

g(x)
(x—xo)"+1

derivatives and value equal to 0 at x, meaning it satisfies the conditions for generalized rolle’s

Set = C.Then g(x) — C(x — x4)"*1 is 0 at x from how we defined C and has its first n

theorem. Therefore, there exists a pointy between x, and x such that the n+1’th derivative of



g() — C(y — xo)™*1is 0. But the derivative of the second term is just C(n+1)! by the power rule, thus

(n+1)
the n+1’th derivative of gatyis also C(n+1)!, thus C = g(T1§?/)‘ Therefore, since we have that

g(x) — C(x — x4)"*1is 0 at x from earlier, we thus have that

(n+1)
_ _ n+1 _ 9 O, n+1

Which is exactly what we wanted to prove.

Example: There exists some point between 0 and 1 such that e? =e—2,becauseifx =1 andxy, =0,

2 y
thene* —x—1= x?ey for some y between 0 and 1, but x=1 so this simplifies to 67 =e—2.



