
We will have to build a lot of boring theory and definitions that may seem irrelevant to get to the 
results we need. While this may look intimidating, I will aim to make this more self contained than all 
of the other proofs I have seen of results like this, which annoyingly are all hard to follow because they 
are aimed at people who are better at maths than me even though I am at the level where I am 
sometimes expected to implicitly use these results, something I aim to fix in this document for future 
interested students like me. No more “Let (Symbol I’ve never seen) be a measure space (steps with 
symbols I haven’t seen that I can’t follow) intimidation” nonsense. 

A quick note on open sets: 

An interval on the number line is called open if it goes from A to B without containing A and B, ie it 
does not contain its boundary. The same can be said for subsets of the plane or hyperplanes – they 
are open if they do not contain any of their boundary. They are closed if they contain all of their 
boundary. The formal definition of a boundary is a point where no matter how small of a circle or ball 
you make around that point, it will contain points both inside and outside the set. Note that since an 
open set contains none of its boundary, it has the property that for any point in the open set, all points 
sufficiently close to that point are in that set, so open sets must always have some thickness to them. 
This is related to the idea that there is no smallest real number greater than another real number, and 
whether sets are open or closed turns out to be surprisingly important. Also, arbitrary unions of open 
sets are open since each point has a “ball” around it inside each of the open sets in the union and 
thus the whole thing, similarly arbitrary intersections of closed sets are closed. The reverse 
implications only hold for finite unions and intersections (since infinitely many balls intersection 
could be a point but finitely many is a ball). 

We usually call open intervals (a,b) meaning everything from a to b not inclusive, and closed intervals 
[a,b] to mean everything from a to b inclusive, and [a,b) means everything from a to b including a but 
not b. 

We need to recall the definition of the Lebesgue integral from the end of level 4. Now we prove a useful 
lemma known as the monotone convergence theorem. Suppose we have a sequence of non-negative 
functions 0 < 𝑓1 < 𝑓2 < 𝑓3  … converging to f in the limit pointwise (ie, f is the pointwise supremum), 
and suppose f is integrable (ie its integral is finite). 

To do this, we will prove that eventually, ∫ 𝑓𝑛 eventually gets larger than (∫ 𝑓) − 𝜀 regardless of how 
small we make 𝜀.  

We know we can find a simple non-negative function g(x) such that ∫ 𝑔 ≥ (∫ 𝑓) −
𝜀

3
 because ∫ 𝑓 is 

defined as the least upper bound of integrals of simple functions, meaning if we could not find simple 
functions below f whose integrals are arbitrarily close to the integral of f, f would not be the least upper 

bound. The reason for our choice of 𝜀
3

 will become clear eventually. Now we want to shift our 𝑔 

downwards by a constant 𝛿 in such a way that ∫ 𝑔− ≥ (∫ 𝑓) −
2𝜀

3
 where 𝑔− is defined as 𝑔 − 𝛿 if 𝑔 > 𝛿 

and 0 otherwise. This ensures 𝑔− is always non-negative and that it is at most 𝑔 − 𝛿. So we have two 
cases: If the length of our interval that we are integrating along is a finite length l, then we pick 𝛿 to be 
𝜀

3𝑙
, since then the total amount that the rectangles get moved down by which is 𝜀

3𝑙
 times the total 

length of the rectangles which is l is at most 𝜀
3

. If we are integrating from −∞ to ∞ then we can still 

apply the same argument since the length on which our g is non-zero is finite. This is true because the 
integral is defined as the least upper bound of the integrals of all such g. Now define the set 𝑆𝑛as the 



set of values x such that 𝑓𝑛(𝑥) ≥ 𝑔−. Then since the f’s are increasing, each set 𝑆𝑛 must contain the 
previous set 𝑆𝑛−1. Now I claim there is an N such that the integral over the parts of our interval not 

containing 𝑆𝑁 of 𝑓 is less than or equal to 𝜀
3

. To do this, suppose the contrary, that there is a set T such 

that the integral of 𝑓 over T is more than 𝜀
3

 but no point in T ever goes into any of the 𝑆𝑛’s. We know that 

f is not 0 anywhere in T because if f(a) is 0 then a is in all 𝑆𝑛’s since all 𝑓𝑛’s will be 0 at those points by 
definition which means they satisfy 𝑓𝑛(𝑥) ≥ 𝑔−since 𝑔− would also be 0 at those points as 𝑔− is non 
negative and never bigger than f which is 0. But then, this means that everywhere in T,  𝑔− is strictly 
less than f, since if  0 < 𝑓 < 𝛿 then 𝑔− = 0 and otherwise 𝑔− = 𝑓 − 𝛿. Therefore, 𝑓𝑛(𝑥) ≤ 𝑔− for all n 
and x in T by definition of the 𝑆𝑛’s and of T, so the least upper bound of 𝑓𝑛(𝑎) for any point a in T is at 
most 𝑔−(𝑎) which is strictly less than f(a), which contradicts the definition of f. This means if we let 𝑇𝑁 

be the interval not including 𝑆𝑛, then ∫ 𝑓 ≤
𝜀

3

 

𝑇𝑁
. Therefore, putting everything together, ∫ 𝑓𝑛 ≥ ∫ 𝑓𝑛

 

𝑆𝑁
≥

∫ 𝑔− 

𝑆𝑁
= ∫ 𝑔− − ∫ 𝑔− 

𝑇𝑁
≥ ∫ 𝑔− − ∫ 𝑓

 

𝑇𝑁
≥ ∫ 𝑔− −

𝜀

3
≥ (∫ 𝑓) − 𝜀. This completes the proof of the lemma. 

Note which will make sense later: We define the integral of the dirac delta parts separately, but the 
theorem above still applies to those – I will explain why in the same part where I define dirac deltas in 
the stats document. 

Note also that the same argument can be used to prove the above theorem (and thus the theorems 
below that depend on it) for integrals of functions over 2D, 3D, or higher dimensional areas. This will 
be important later. Bolzano weierstrass (A theorem proved below) and its consequences can be used 
provided the set is not only bounded but also closed, since we want sequences to not only converge 
but have their limit be part of the set. 

Now we will prove another lemma known as Fatou’s lemma. 

Now, Fatou’s lemma states that if we have a sequence of non-negative functions 𝑓𝑛(𝑥), then for every 
x define 𝑓(𝑥) = lim inf

𝑛→∞
𝑓𝑛(𝑥), then on any interval we have ∫ 𝑓 ≤ lim inf

𝑛→∞
∫ 𝑓𝑛. 

Now, for all fixed x, we define 𝑔𝑛(𝑥) as inf
𝑘≥𝑛

𝑓𝑘(𝑥). Then we know that for any fixed x, this is not 

decreasing as chopping more terms of the start cannot make the infimum lower. We also have the 
following by stuff we have discussed so far: 

 

We have ∫ 𝑓 = ∫ sup 𝑔𝑛 = sup ∫ 𝑔𝑛 where the second equality is because g is increasing so we can 
apply the monotone convergence theorem. Since ∫ 𝑔𝑛 is an increasing sequence, the lim inf of this 
sequence is going to equal the limit of the sequence, as the infima of the tails are the same as the 
terms themselves. But the limit of an increasing sequence is the same as its supremum, so we now 
have that ∫ 𝑓 = sup ∫ 𝑔𝑛 = lim inf

𝑛→∞
∫ 𝑔𝑛. Because 𝑔𝑛 is by definition not greater than 𝑓𝑛 for all n at any 

input value, we have that∫ 𝑓 = sup ∫ 𝑔𝑛 = lim inf
𝑛→∞

∫ 𝑔𝑛 ≤ lim inf
𝑛→∞

∫ 𝑓𝑛, completing the proof of Fatou’s 

lemma. From how we defined f, we have that ∫ lim inf
𝑛→∞

𝑓𝑛 ≤ lim inf
𝑛→∞

∫ 𝑓𝑛. We can also get that if 𝑓𝑛 is 

bounded above by a function g with a finite integral on our interval for all n, then applying Fatou’s 
lemma to 𝑔 − 𝑓𝑛 gives us the reverse fatou lemma:∫ lim sup

𝑛→∞
𝑓𝑛 ≥ lim sup

𝑛→∞
∫ 𝑓𝑛. 



The dominated convergence theorem states that if we have a sequence of functions 𝑓𝑛(𝑥) which for 
all x converge to a function f(x) as n goes to infinity, and there is a function g(x) which has a finite 
integral on the interval we are working in, and that |𝑓𝑛(𝑥)| ≤ 𝑔(𝑥) for all n and all x, then we have that 
∫ lim

𝑛→∞
𝑓𝑛 = lim

𝑛→∞
∫ 𝑓𝑛, essentially giving us a condition for when we can swap limits and integrals. Recall 

how at some places in level 4 we talked about the triangle inequality which says that |a+b|≤|a|+|b|, we 
will use this now to say that |𝑓 − 𝑓𝑛| ≤ |𝑓| + | − 𝑓𝑛| = |𝑓| + |𝑓𝑛| ≤ 2𝑔 (note that f is at most g at all 
places since it is the pointwise limit of functions that are at most g so it would not make sense for it to 
exceed g.) We also have by definition that lim sup

𝑛→∞
|𝑓 − 𝑓𝑛| = 0. Also, in this next step, we will use the 

fact analagous to the triangle inequality which says that | ∫ ℎ(𝑥)| ≤ ∫|ℎ(𝑥)|  for any function h(x). For 
real numbers this is the case because h is always between -|h| and |h|, so the integral of h will always 
be between the integral of -|h| and the integral of |h|, so the absolute value of that will be at most the 
integral of |h|. For complex numbers (which I am doing to show that we can generalize this beyond real 
integrals), we have ∫ ℎ = 𝑟𝑒𝑖𝜃 so | ∫ ℎ| = 𝑟 and ∫ ℎ𝑒−𝑖𝜃 = 𝑟. Since r is real, we have that 𝑅𝑒(∫ ℎ𝑒−𝑖𝜃) =

𝑟. Since the real part of the integral is the integral of the real part, we have ∫ 𝑅𝑒(ℎ𝑒−𝑖𝜃) = 𝑟 ≤

∫ |ℎ𝑒−𝑖𝜃 | = ∫|ℎ|. Since | ∫ ℎ| = 𝑟 ≤ ∫|ℎ| this completes the proof. Now back to dominated 
convergence: 

|∫ 𝑓 − ∫ 𝑓𝑛| = |∫(𝑓 − 𝑓𝑛)| ≤ ∫ |𝑓 − 𝑓𝑛| 

Now, we use the reverse fatou lemma: 

lim sup
𝑛→∞

∫ |𝑓 − 𝑓𝑛| ≤ ∫ lim sup
𝑛→∞

|𝑓 − 𝑓𝑛| = ∫ 0 = 0 

Therefore, since the lim sup is at most 0 and the terms in ∫ |𝑓 − 𝑓𝑛| are non-negative, both the lim sup 
and the lim of this sequence must be exactly 0. So, |∫ 𝑓 − ∫ 𝑓𝑛| ≤ ∫ |𝑓 − 𝑓𝑛| → 0 so |∫ 𝑓 − ∫ 𝑓𝑛| → 0 so 
∫ 𝑓𝑛 approaches ∫ 𝑓 so the limit and integral interchange is justified. 

Now, if 𝑓𝑛(𝑥) is defined as n for 0<x<1/n then the integral of this will be 1, but at all points between 0 
and 1 𝑓𝑛 will eventually go to 0, so the integral of the limit is not the limit of the integral. It turns out that 

in this case it turns out we cannot find a function g such that for all n we have |∫ 𝑓𝑛
1

0
| ≤ |∫ 𝑔

1

0
| < ∞. 

This is a standard textbook counterexample. 

Another result says that if I have ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 on a rectangle (that may go off to infinity) then I can 
swap the integrals provided ∬ |𝑓(𝑥, 𝑦)|𝑑𝑥𝑑𝑦 is finite on that rectangle. An intuitition for we have this 
condition is because we know from level 4 that we can safely rearrange terms in a sum if the absolute 
value of the terms has a finite sum, and so the same applies for all the sums of 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 as dx and 
dy get smaller, as by moving the integrals around we are just changing the order in which we add the 
terms, which we already know is allowed whenever ∬ |𝑓(𝑥, 𝑦)|𝑑𝑥𝑑𝑦 converges. We will actually prove 
that in the multivariable case we can change the order of integrals. 

Proof of the claim above: 

We can define the integral as ∬ 𝑓(𝑥, 𝑦)𝑑(𝑥, 𝑦) in the supremum sense analagous to above. Then if we 
show that this equals ∫(∫ 𝑓(𝑥, 𝑦)𝑑𝑥) 𝑑𝑦 then the result will follow by symmetry. If we have more than 
two variables, our proof will show that we can split the many variables into 2 and split it into multiple 
integrals. For example, ⨌𝑓(𝑥, 𝑦, 𝑧, 𝑤)𝑑(𝑥, 𝑦, 𝑧, 𝑤) = ∬[∬ 𝑓(𝑥, 𝑦, 𝑧, 𝑤)𝑑(𝑥, 𝑦)] 𝑑(𝑧, 𝑤) 



Part 1 – Proof for non-negative functions: 

We will do this for the 2D case since it is precisely the same idea as the general case. 

Set 𝑔(𝑥) ≔ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦. Note that the theorem holds for the indicator of a rectangle by direct 
calculation, and thus it holds for all non-negative simple functions (since they are just finite sums of 
indicators). There exists a sequence of non-negative simple functions that is non-decreasing and 
converges to f and is such that ∬ 𝑓𝑛(𝑥, 𝑦)𝑑(𝑥, 𝑦) → ∬ 𝑓(𝑥, 𝑦)𝑑(𝑥, 𝑦) (In fact, by monotone 
convergence, pointwise convergence to f is enough to gurantee that ∬ 𝑓𝑛(𝑥, 𝑦)𝑑(𝑥, 𝑦) →

∬ 𝑓(𝑥, 𝑦)𝑑(𝑥, 𝑦) if f is non-negative and non-decreasing). Pick such a sequence 𝑓𝑛 and define 𝑔𝑛(𝑥) ≔

∫ 𝑓𝑛(𝑥, 𝑦)𝑑𝑦. 

By the monotone convergence theorem applied to ∫ 𝑓𝑛(𝑥, 𝑦)𝑑𝑦 = 𝑔𝑛(𝑥), we have that 𝑔𝑛(𝑥) → 𝑔(𝑥) 
as ∫ 𝑓𝑛(𝑥, 𝑦)𝑑𝑦 → ∫ 𝑓(𝑥, 𝑦)𝑑𝑦, since 𝑓𝑛 is a non-decreasing sequence of non-negative functions 
converging pointwise to f. After this, we can apply it again in x to ∫ 𝑔𝑛(𝑥)𝑑𝑥 to show that ∫ 𝑔𝑛(𝑥)𝑑𝑥 →

∫ 𝑔(𝑥)𝑑𝑥, for exactly the same reason. 

Finally, we already know by how we picked 𝑓𝑛 that ∬ 𝑓𝑛(𝑥, 𝑦)𝑑(𝑥, 𝑦) → ∬ 𝑓(𝑥, 𝑦)𝑑(𝑥, 𝑦).  For each n, 
∫ 𝑔𝑛(𝑥)𝑑𝑥 = ∬ 𝑓𝑛(𝑥, 𝑦)𝑑(𝑥, 𝑦) as the theorem is proved for simple functions. 

But then the limits as n goes to infinity of ∫ 𝑔𝑛(𝑥)𝑑𝑥 and ∬ 𝑓𝑛(𝑥, 𝑦)𝑑(𝑥, 𝑦) must be the same as the 
integrals are equal for all n. This means ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦 𝑑𝑥 = ∫ 𝑔(𝑥)𝑑𝑥 = ∬ 𝑓(𝑥, 𝑦)𝑑(𝑥, 𝑦) as required.  

The symmetric argument allows us to conclude that ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = ∬ 𝑓(𝑥, 𝑦)𝑑(𝑥, 𝑦) =

∬ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥 when f is non-negative. 

Part 2 – Extension to general case 

Since the integral of the absolute value of f is finite, it means if I restrict f to where it is positive, and 
define a function g as -f where f is negative, I can apply part 1 to both of those, and then subtract the 
results. This is only problematic when we do not have absolute convergence and then we get ∞ − ∞.  

Also, in my exponentials and logarithms video, I briefly mentioned that if a function has a single-
valued antiderivative then the integral along a path of that function does not depend on the path. By 
“integrate along a path”, I mean take the sum of the function times the distance you move by on the 
path (eg if you move from 1.07+3.12i to 1.08+3.14i you add (0.01+0.02i)f(1.07+3.12i)), then take the 
limit of these sums as these distances go to 0. Intuitively, similar to actual integration, taking the sum 
like this moves you along the antiderivative, which if it is single valued (unlike log, for example) will not 
allow you to possibly have path dependence.  

Lemma (Bolanzo weierstrass): Every sequence that is bounded in absolute value has a(n infinite) 
convergent subsequence. 

Idea: Plot the sequence on a graph then take the terms that are maxima of the first n terms, like this 



Image: Shows a sequence graph with 
peaks circled. 

Here I have circled peaks, ie points that are larger/higher than (or equally as large/high as)  all points 
after them. If there are infinitely many of these, then these form an infinite non-increasing sequence 
which is bounded below, which has a highest lower bound that it must converge to. If there are finitely 
many peaks, this means there has to be an infinite sequence of non-decreasing points, since after the 
last peak, the next term is not a peak meaning there is a term after that term that is larger than it, and 
that term is also not a peak so there is a larger term after that and so on. This forms an infinite 
increasing sequence which is bounded above, which converges to its least upper bound. So done. 

Formal definition of a continuous function: 

We want to say that as the inputs get close together the outputs of the function get arbitrarily close 
together since that is what it intuitively means to get continuous. We will write this precisely as 
follows: 

A function f(x) is continuous at x if for any ε, no matter how small, you can pick 𝛿 small enough that for 
any a with |x-a|< 𝛿, |f(a)-f(x)|< ε. 

We will need this definition because we will prove that if a function is continuous everywhere on a 
finite interval, including the endpoints of the finite interval, then it is uniformly continuous (I will 
explain what this means shortly). This is because, and I can’t believe I’m saying this, this is a technical 
dependency for a technical dependency (convergence in distribution implies convergence in 
characteristic function) of a technical dependency (cramer wold device) of a technical dependency 
(multivariate clt) for the chi squared result. In fact bolzano weierstrass was for FIVE levels of 
dependency. Uniformly continuous means that not only are we able to pick a  𝛿 for each x, but a 𝛿 that 
works for all x. An example of a function that is not uniformly continuous is 1/x on the open interval 
(0,1), since if I pick a certain ε, then no matter how small I pick 𝛿, I can go close enough to 0 that the 
|x-a|< 𝛿 implies |f(a)-f(x)|< ε condition is not satisfied, so I cannot pick a 𝛿 that works for all x. 

Proof of result: Since we are assuming our function is continuous on a closed bounded interval, 
bolzano weierstrass applies by boundedness, and the subsequence in question converges to a limit in 
the interval by closure of the interval. 

Assume for a contradiction that our function is continuous but not uniformly continuous on our 

closed bounded interval. Then there is an ε>0 such that if I pick 𝛿 =
1

𝑛
 there is some 𝑥𝑛, 𝑦𝑛 with 



|𝑥𝑛 − 𝑦𝑛| <
1

𝑛
 but |𝑓(𝑥𝑛) − 𝑓(𝑦𝑛)| > 𝜀. We know that 𝑥𝑛 and 𝑦𝑛 both have convergent subsequences 

converging to places on our closed interval, and in fact they converge to the same place since the 
difference between𝑥𝑛 and 𝑦𝑛 gets arbitrarily small. If the subsequences in question are 𝑥𝑛𝑖

 and 𝑦𝑛𝑖
 

and their limits are x, then 𝑓(𝑥𝑛𝑖
) → 𝑓(𝑥) and 𝑓(𝑦𝑛𝑖

) → 𝑓(𝑥) because continuous have functions that 
whenever the inputs are close the outputs are close, so intuitively you can pass limits through 
continuous functions like this. But 𝑓(𝑥𝑛𝑖

) and 𝑓(𝑦𝑛𝑖
) somehow converge to the same limit but are 

always > ε, which is a contradiction. 

Now, I will talk about cardinality. This is really fun stuff, but I will not go through all the fun results here, 
only the results we need. The motivation of this is to show that there are, in a precise sense, “more” 
real numbers than natural numbers, so I can show that you cannot take a sum over all the real 
numbers of positive numbers and still get a finite number. 

We consider two sets to be the same size if there is a one to one correspondence between their 
elements. This sounds obvious, but it shows that there are equally as many even positive integers as 
positive integers, because we can map 1—2 and 2—4 and 3—6 and so on, giving us a one to one 
correspondence. 

Now we prove we cannot find a one to one correspondence between real numbers on any interval and 
positive integers. We will do this for the interval (0,1) then note that we can get to any interval by 
scaling, or the entre reals by doing cot(πx). The property of there being a correspondence to positive 
integers is called being countable. But, I think listable is a better term. 

So, suppose we do, in fact, have a list of all the real numbers between 0 and 1. 

1. 0.3141592653589793… 
2. 0.2718281828459045… 
3. 0.1414213562373095… 
4. 0.3498579345858968… 
5. 0.9988237478199283… 

Now construct a new number where the n’th decimal digit after the point is not the red number, and 
such that we do not have infinite trailing 9’s or 0’s (to ensure the number has a unique decimal 
representation. For the numbers in our list we pick the one with trailing 0’s and not trailing 9’s 
whenever we have to make this choice). For example, adding 1 to each red we could have 0.48293… 
But this is clearly not on the list – It differs from everything on the list by at least one digit. 
Contradiction. Essentially, this makes it so if you think you found a way to list them, I can prove you are 
wrong. 

Now if we had a sum over the real numbers of positive numbers x, split them into subsets: 

 𝑥 ≥ 1,
1

2
≤ 𝑥 < 1,

1

3
≤ 𝑥 <

1

2
,

1

4
≤ 𝑥 <

1

3
. 

Then one of these subsets has to have infinitely many elements. Why? If they all had finitely many 
elements then they would form a subset of this infinite 
table: 

 1 2 3 4 5 6 7 8 9 10 
Set 1           
Set 2           

Table: empty table with rows as the 
sets defined above, meant to be 
filled with the terms in our 
uncountable sum. 



Set 3           
Set 4           
Set 5           
Set 6           
Set 7           
Set 8           
Set 9           

So I could then go along the table in a zigzag pattern like this in the order shown below, adding to my 
list whenever the elements are in the table, and not adding them otherwise. 

 1 2 3 4 5 6 7 8 9 10 
Set 1 1 2 6 7 15 …     
Set 2 3 5 8 14       
Set 3 4 9 13        
Set 4 10 12         
Set 5 11          
Set 6           
Set 7           
Set 8           
Set 9           

All cells get reached eventually, so this would imply we can list the cells. But we are assuming we are 
adding one term for each real number, and we cannot list the real numbers. Therefore, there is a set 
with infinitely many elements, so the sum is infinite. 

Definition (big O notation): 

A function g(x) is O(f(x)) if when 𝑥 is sufficiently close to 𝑥0, |g(x)| is bounded by M|f(x)| where M is 

some fixed positive constant. If f(x) is not 0 in the vicinity of 𝑥0 we can write that |𝑔(𝑥)

𝑓(𝑥)
| is bounded by M 

when 𝑥 is sufficiently close to 𝑥0. We can also say, and this is often done in computer science when 
analyzing how long an algorithm will take, that a function is a function g(x) is O(f(x)) as x goes to infinite 
if when x is large enough, |g(x)| is bounded by M|f(x)|. In previous documents, the value of 𝑥0 has been 
implied. Sometimes people write g(x)=O(f(x)) 

Definition (little o notation): 

Like big O notation except if g(x) is o(f(x)) at 𝑥0 it means that g(x) gets much smaller than f(x) when 𝑥 is 
sufficiently close to 𝑥0. Precisely, it means that M can be made arbitrarily small by making x 
sufficiently close to 𝑥0, or by making x sufficiently large in the case 𝑥0 is infinity. 

Note that if f(x)=o(g(x)), then we necessarily also have f(x)=O(g(x)). 

Examples: 

𝑥 ≠ 𝑂(𝑥2) as 𝑥 → 0 since 𝑥2 is much smaller than x. In fact, 𝑥2 = 𝑜(𝑥) as 𝑥 → 0. 

𝑥 = 𝑂(𝑥2) = 𝑜(𝑥2) as 𝑥 → ∞ but 𝑥2 ≠ 𝑂(𝑥) as 𝑥 → ∞. 

𝑥 = 𝑂(√𝑥) as 𝑥 → 0. 

sin (2𝑥) = 𝑂(𝑥) as 𝑥 → 0, but sin (2𝑥) ≠ 𝑜(𝑥) as 𝑥 → 0. 

Table: Shows 1, 2, 3, in the relevant 
cells to visually show a one to one 
mapping between the numbers and 
the table cells, if the table were to go 
on forever. 



𝑥 ≠ 𝑂(𝑥𝑠𝑖𝑛(𝑥)) as 𝑥 → ∞, because although x does not seem to be much larger than xsin(x), the ratio 
𝑥

𝑥𝑠𝑖𝑛(𝑥)
 is unbounded when x gets close to integer multiples of π. 

Also, a principle here is the idea that a polynomial is dominated by its leading term. For example 

2𝑥3 + 4𝑥 + 12 = 𝑂(𝑥3) as 𝑥 → ∞ because when x>1, |2𝑥3 + 4𝑥 + 12|≤ |2𝑥3| + |4𝑥| +

|12|< |2𝑥3| + |4𝑥3| + |12𝑥3| = 18|𝑥3| so we can put M=18, then done. Also, big o notation can 

capture the idea that exponentials beat polynomials (by the way you can prove this as 𝑎
𝑥

𝑥𝑏 goes to 

infinity as x goes to infinity which you can see if you apply l’hopital’s rule at least b times), as we can 
write that P(x)=o(exp(x)) for any polynomial P. Also, log(𝑥) = 𝑜(𝑥𝜀) for all positive ε and this can be 
proven the same way, or by thinking of it intuitively as a sort of inverse of the exponentials beat 
polynomials idea. Note exp(x) means e^x. 

Another idea is that non-zero constants don’t matter here since we’re looking at the bigger picture 
with the growth rate of these functions. 

Example: 

Since lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
= 𝑓′(𝑥),  lim

ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
− 𝑓′(𝑥) = 0 so 𝑓

(𝑥+ℎ)−𝑓(𝑥)

ℎ
− 𝑓′(𝑥) = 𝑜(1) as x goes to h 

by definition. Therefore, 𝑓(𝑥 + ℎ) − 𝑓(𝑥) − ℎ𝑓′(𝑥) = 𝑜(ℎ) by multiplying by h on both sides, so we can 
write that 𝑓(𝑥 + ℎ) − 𝑓(𝑥) = ℎ𝑓′(𝑥) + 𝑜(ℎ), which looks a lot like what I did when I justified 
differentiating infinite power series. 

Definition: Taylor polynomial 

A taylor polynomial of degree n is a taylor series for a function that is n times differentiable but only up 
to the term in 𝑥𝑛. We write this as 𝑇𝑛(𝑓)(𝑥). This is a polynomial which gives an approximation of f 
near some point 𝑥0, with error equal to 𝑜((𝑥 − 𝑥0)𝑛). 

Claim 1: If f is n times differentiable at 𝑥0 then  𝑓(𝑥) − 𝑇𝑛(𝑓)(𝑥) = 𝑜((𝑥 − 𝑥0)𝑛) as 𝑥 → 𝑥0 if 𝑥0 is the 
point we are doing a taylor series around. 

Claim 2: If f is n+1 times continuously differentiable on the interval [𝑥0, 𝑥] then  𝑓(𝑥) − 𝑇𝑛(𝑓)(𝑥) =

𝑂((𝑥 − 𝑥0)𝑛+1) as 𝑥 → 𝑥0 if 𝑥0 is the point we are doing a taylor series around. 

Claim 3: If the conditions for claim 2 hold, then there exists some 𝑡 ∈ (𝑥0, 𝑥) such that 

𝑓(𝑥) − 𝑇𝑛(𝑓)(𝑥) =
(𝑥−𝑥0)𝑛+1

(𝑛+1)!
𝑓(𝑛+1)(𝑡). 

We will prove this. 

Lemma 1 (Extreme value theorem): 

Any function continuous on a finite closed interval is bounded. 

Note: It is very important that the interal is closed. On the open interval (0, 1) we can define 1/x which 
is continuous on that interval, but not on the closed interval [0,1] because the closed interval contains 
x=0 but the open interval does not. But there’s not much you can do to make a continuous unbounded 
function defined on a finite closed interval – Try it! 

We will use the fact that every bounded sequence has a convergent subsequence since that was 
proven in the level 6 technical results document. 



Suppose for a contradiction f is unbounded. Then for all n, we can choose 𝑥𝑛 in [a,b] with |𝑓(𝑥𝑛)| > 𝑛. 
Now pick a convergent subsequence 𝑥𝑛𝑘

 of the sequence formed by each each 𝑥𝑛, and call its limit L, 
which is in [a,b] since [a,b] is closed so limits of sequences in [a,b] are in [a,b]. By continuity, 𝑓(𝑥𝑛𝑘

) →

𝑓(𝐿), but since 𝑓(𝑥𝑛𝑘
) is unbounded, it follows that this is a contradiction, since 𝑓(𝐿) cannot be 

defined. 

Important note: Bolzano weierstrass holds for sequences of points in k dimensions, provided the 
bounded set the sequence is in is closed as mentioned above – there is a subsequence whose x 
coordinate converges and a subsequence of that whose y coordinate converges etc, and thus the 
above theorem holds for functions of more than one variable, as well as the theorem about uniform 
continuity and about riemann integrals for continuous functions, as the definition of continuity is 
analagous. This is important since we use these theorems in the context of functions of multiple 
variables. 

Lemma 2 (Mean value theorem): 

This lemma assumes the values are real, so everything proven here applies to real numbers, but not 
general complex numbers. 

First of all, a picture (from wikipedia): 

 

You can see that it’s kind of obvious that the function’s derivative attains its mean value, since the 
function is differentiable everywhere by assumption so there are no spikes. This is essentially what 
the theorem says. However, to prove it, we want to subtract the line from (a, f(a)) to (b, f(b)) from y. This 
line has the slope we want so we want to prove that our new function, which is 0 at a and b, attains a 
derivative of 0 between a and b. This new function is either constant, in which case the theorem is 
obvious, or it goes above 0 at some point (If not prove the theorem for minus the function). Since it is 
continuous on a closed, bounded interval, it is bounded, and has either a maximum or a minimum. At 
such a point, the derivative exists by our hypothesis, and it can’t possibly be something other than 0. 

Why? Suppose the derivative were positive at a maximum point c, then by definition of limits, 𝑓
(𝑥)−𝑓(𝑐)

𝑥−𝑐
 

would be positive if we make x close enough to c with x>c, implying f(x)>f(c) which is a contradiction. 



In particular, we have Rolle’s theorem, which says that if f(a)=f(b)=0 and f is differentiable on (a,b) then 
there is a point a<x<b such that f’(x)=0 

Lemma 3 (Generalized Rolle’s theorem): 

Here is the statement and proof taken from Cambridge notes: 

 

Example: The function 𝑥3 − 𝑥2 has its first derivative and value equal to 0 when x=0, and its value 
equal to 0 at x=1, so between 0 and 1 it must have a point of inflection. Indeed it does when x=1/3. 

Theorem 1: 

If 𝑓(𝑥) is n times differentiable at 𝑥 = 𝑥0 then 

 𝑓(𝑥) − 𝑓(𝑥0) − (𝑥 − 𝑥0)𝑓′(𝑥0) −
(𝑥−𝑥0)2

2!
𝑓′′(𝑥0) − ⋯ −

(𝑥−𝑥0)𝑛

𝑛!
𝑓(𝑛)(𝑥0) 

is 𝑜((𝑥 − 𝑥0)𝑛) as 𝑥 → 𝑥0. 

Proof: 

The first n derivatives of the above expression are all 0 when evaluated at 𝑥0 because for k between 0 

and n inclusive the 
(𝑥−𝑥0)𝑘

𝑘!
𝑓(𝑘)(𝑥0) term has k’th derivative equal to 𝑓(𝑘)(𝑥0) and all its other 

derivatives are 0 at 𝑥0 by repeated application of the power rule so therefore it cancels the k’th 
derivative of the 𝑓(𝑥) term to make it equal to 0. 

So, by the definition of o, we need to show that 𝑓(𝑥)

(𝑥−𝑥0)𝑛 → 0 as 𝑥 → 𝑥0. This is fine as (𝑥 − 𝑥0)𝑛 is not 0 

when you make it arbitrarily small so it can go in the denominator. 

Now, if we can show that any function whose first n derivatives are all 0 at 𝑥0 is 𝑜((𝑥 − 𝑥0)𝑛), we will 

be done. It is clear that a function whose value and  first derivative is 0 at 𝑥0 is 𝑜(𝑥 − 𝑥0) since 𝑔(𝑥)

𝑥−𝑥0
=

𝑔(𝑥)−𝑔(𝑥0)

𝑥−𝑥0
→ 𝑔′(𝑥0) = 0, so this theorem is true if n=1. But now suppose that we know that this 

theorem is true for n=k, then we will prove it is also true for n=k+1, therefore proving this by induction. 
Let g(x) be such that at 𝑥0 its value and first k+1 derivatives are all 0. By the induction hypothesis, g’(x) 
has its first k derivatives and value equal to 0 at 𝑥0 so 𝑔′(𝑥0 + ℎ) = ℎ𝑘𝜀(ℎ) with 𝜀(ℎ) → 0 as ℎ → 0, by 
the definition of little o notation and the induction hypothesis. By the mean value theorem, there 
exists some ϑ between 0 and 1 such that 

 𝑔′(𝑥0 + ϑℎ) =
𝑔(𝑥0+ℎ)−𝑔(𝑥0)

ℎ
, or equivalently ℎ𝑔′(𝑥0 + ϑℎ) = 𝑔(𝑥0 + ℎ), meaning that by the induction 

hypothesis 𝑔(𝑥0 + ℎ) = ℎ(ℎ𝑘𝜀(ϑℎ)) = ℎ𝑘+1𝜀(ϑℎ) = 𝑜(ℎ𝑘+1). So induction done and proof complete. 

Remark: 

Just because each remainder is small does not mean that the taylor series converges, since 
convergence at some x requires that there, the remainder is uniformly small, but it could be that the 



interval where the remainder is small shrinks and is zero in the limit. There are functions such that the 
taylor series does not converge in any interval despite the functions being infinitely differentiable, like 
exp (−𝑥−2) around x=0. However, it turns out that if the function has a complex derivative the taylor 
series always converges in some interval, see IB complex analysis. I’m not proving it because we don’t 
need to use it for this purpose. 

Theorem 2: 

If 𝑓(𝑥) is n+1 times continuously differentiable in an open interval containing 𝑥0 then 𝑓(𝑥) − 𝑓(𝑥0) −

(𝑥 − 𝑥0)𝑓′(𝑥0) −
(𝑥−𝑥0)2

2!
𝑓′′(𝑥0) − ⋯ −

(𝑥−𝑥0)𝑛

𝑛!
𝑓(𝑛)(𝑥0) − ⋯ is 𝑂((𝑥 − 𝑥0)𝑛+1) as 𝑥 → 𝑥0. 

Proof: 

Lemma: 

Let f be n+1 times differentiable on [a,b] with it’s (n+1)’th derivative continuous. Then we have that 

𝑓(𝑏) = 𝑓(𝑎) + (𝑏 − 𝑎)𝑓′(𝑎) +
(𝑏−𝑎)2

2!
𝑓(2)(𝑎) + ⋯ +

(𝑏−𝑎)𝑛

𝑛!
𝑓(𝑛)(𝑎) + ∫

(𝑏−𝑡)𝑛

𝑛!
𝑓(𝑛+1)(𝑡)𝑑𝑡

𝑏

𝑎
. 

Proof of lemma: We will do this by induction on n. When n=0 the theorem says 

𝑓(𝑏) = 𝑓(𝑎) + ∫ 𝑓′(𝑡)𝑑𝑡
𝑏

𝑎

 

Which is known to be true. Now we will do integration by parts to get 

∫
(𝑏 − 𝑡)𝑛

𝑛!
𝑓(𝑛+1)(𝑡)𝑑𝑡

𝑏

𝑎

= [
−(𝑏 − 𝑡)𝑛+1

(𝑛 + 1)!
𝑓(𝑛+1)(𝑡)]

𝑎

𝑏

+ ∫
(𝑏 − 𝑡)𝑛+1

(𝑛 + 1)!
𝑓(𝑛+2)(𝑡)𝑑𝑡

𝑏

𝑎

 

=
(𝑏 − 𝑎)𝑛+1

(𝑛 + 1)!
𝑓(𝑛+1)(𝑎) + ∫

(𝑏 − 𝑡)𝑛+1

(𝑛 + 1)!
𝑓(𝑛+2)(𝑡)𝑑𝑡

𝑏

𝑎

 

So the lemma follows by induction. 

Now this implies the result since 𝑓(𝑛+1) is continuous on the closed interval [a,b] and thus bounded 

there, say it is bounded in absolute value by M. Then the integral is at most ∫
(𝑏−𝑡)𝑛

𝑛!

𝑏

𝑎
𝑀𝑑𝑡 = 𝑀

(𝑏−𝑎)𝑛+1

𝑛+1!
 

which is 𝑂((𝑥 − 𝑎)𝑛+1) as required. 

Theorem 3: 

𝑓(𝑥) − 𝑓(𝑥0) − (𝑥 − 𝑥0)𝑓′(𝑥0) −
(𝑥−𝑥0)2

2!
𝑓′′(𝑥0) − ⋯ −

(𝑥−𝑥0)𝑛

𝑛!
𝑓(𝑛)(𝑥0) =

(𝑥−𝑥0)𝑛+1

(𝑛+1)!
𝑓(𝑛+1)(𝑡) for some 

t(x) between 𝑥0 and 𝑥, provided the first n+1 derivatives of f exist and are continuous from 𝑥0 to 𝑥. 

Proof: 

The n=0 case is just the mean value theorem. Consider 𝑔(𝑥) ≔ 𝑓(𝑥) − 𝑓(𝑥0) − (𝑥 − 𝑥0)𝑓′(𝑥0) −
(𝑥−𝑥0)2

2!
𝑓′′(𝑥0) − ⋯ −

(𝑥−𝑥0)𝑛

𝑛!
𝑓(𝑛)(𝑥0). This has its value and first n derivatives at 𝑥0 equal to 0 by the 

same reasoning as we gave in one of the earlier proofs 

Set 𝑔(𝑥)

(𝑥−𝑥0)𝑛+1
= 𝐶. Then 𝑔(𝑥) − 𝐶(𝑥 − 𝑥0)𝑛+1 is 0 at x from how we defined C and has its first n 

derivatives and value equal to 0 at 𝑥0 meaning it satisfies the conditions for generalized rolle’s 
theorem. Therefore, there exists a point y between 𝑥0 and 𝑥 such that the n+1’th derivative of 



𝑔(𝑦) − 𝐶(𝑦 − 𝑥0)𝑛+1 is 0. But the derivative of the second term is just C(n+1)! by the power rule, thus 

the n+1’th derivative of g at y is also C(n+1)!, thus 𝐶 =
𝑔(𝑛+1)(𝑦)

(𝑛+1)!
. Therefore, since we have that 

𝑔(𝑥) − 𝐶(𝑥 − 𝑥0)𝑛+1 is 0 at x from earlier, we thus have that 

 𝑔(𝑥) = 𝐶(𝑥 − 𝑥0)𝑛+1 =
𝑔(𝑛+1)(𝑦)

(𝑛+1)!
(𝑥 − 𝑥0)𝑛+1 

Which is exactly what we wanted to prove. 

Example: There exists some point between 0 and 1 such that 𝑒
𝑥

2
= 𝑒 − 2, because if 𝑥 = 1  and 𝑥0 = 0, 

then 𝑒𝑥 − 𝑥 − 1 =
𝑥2

2
𝑒𝑦 for some y between 0 and 1, but x=1 so this simplifies to 𝑒

𝑦

2
= 𝑒 − 2. 

 


